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Die hier angegebene Literatur ist nur eine Auswahl an Biichern, die ich selbst hilfreich
fiir das Verstehen der Vorlesung fand. Sie ist keinesfalls komplett.
Aufserdem baut diese Vorlesung mafgeblich auf den Theorievorlesungen des Bachelors
auf. Fiir allgemeine Informationen zu diesen Themen mochte ich auf die Zusammenfas-
sung von Jannis Zeller [1]| (sehr kompakt), sowie auf die Lehrbuchreihe von T. Fliefsbach
[2],[3],[4],]5] (ausfiihrlichere Erkldrungen, sowie Ubungsaufgaben) verweisen.
Zusétzlich wird Spezielle Relativitatstheorie zum Verstdndnis der Vorlesung unbedingt
bendétigt. Obwohl Am Anfgang dieser Zusammenfassung eine kleine Einfithrung gegeben
wird empfehle ich fiir mehr Informationen [6] und [7].

Diese Zusammenfassung wurde nach bestem Wissen und Gewissen geschrieben. Trotz-
dem kann ich kann nicht fiir die Richtigkeit der Angaben garantieren. Falls grobe
Fehler auftauchen sollten oder fiir sonstige Anmerkungen bitte ich um eine E-Mail an
jonas.el.gammal@rwth-aachen. de.
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1. Special Relativity

1.1. Principles of special relativity

We start with the Special Theory of Relativity (SRT) which we need as foundation to
build the structure of General Relativity (GR). This is just a small introduction, for a
more detailed course see [6].

First, we need three postulates, from which we can build up the mathematical framework
of the SRT.

Principle A ("‘old relativity principle"’)

All inertial observers are equivalent and experience the same laws of physics.

An inertial system is a system, which experiences
no acceleration. In particular, in two systems mov-
ing at constant velocity relative to each other, the
laws of physics are the same. This in turn means
that physical laws explored on Earth are general-  oceinssiean
izable, despite the fact that not all velocities of the
Earth relative to other objects are known to us. ey cre, 9

Principle B

The speed of light is the same in all inertial frames.
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This postulate, which was first implied by the experiment Rest frame of shooter
performed by Michelson & Morley, showed that the Galileo h ‘
transformation could not be sufficient to describe describe -

the transformation from on inertial frame to another. This C&@)w ]d

can be made clear by the following thought experiment. If
one imagines a rocket through which a laser beam is shot J
and requires a constant speed of light in the frame of the ta=ti=7
laser shooter and the rocket, one notices that the time spent
by the laser beam in the rocket is not the same in both
inertial systems (laser, rocket). The paradox was solved Re“@"“‘mket
when Lorentz proposed an alternative transformation that

requires a different understanding of space and time for each 2
observer.

laser

Shooter

Principle C

The dynamics in special relativity are given by the equation

dp AU =
Lo = F 1.1.0.1
a |t (1.10.1)

Here p’ describes the 4-momentum, U the 4-velocity (%

then is the 4-acceleration) and F the 4-force. These will be
defined in 1.6.

1.2. Lorentz-Boosts

We will now work in 4-dimensional space-time. We call a point in this space Event to
clarify the concept of space-time. Such a point is therefore a vector

t

=1
I
IS S
I
TN\
8
N——

A trajectory now becomes 4-Dimensional as well and we call it World line.

We want to represent the connection between two different frames by a transformation.
We therefore consider a simple example in which there is one observer in the O and on
in the O system, whereas O moves with the speed

e
I
oo

THEORY OF RELATIVITY AND COSMOLOGY 8
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relative to O. This simplifies the general transformation

N e 8] o
SIS IS N

to

OO 8 o+
O O Kl

Without sacrificing the generality, we can set our origin to ¥ = 0.

Let’s start with some graphical considerations. First we draw into O a x and a t-line,
which we will multiply by ¢ to get the same units. The choice of ¢ is due to the fact that
this is the only thing which must remain constant in O and O. It is clear that a light
pulse then travels along a 45° line.

We cab easily construct the ct line if we look at an event stays at rest in 0. We then
obtain £ = 0. If we look at the object from O its position is given by

r =wv-t which leads to ¢t = Ex .
v

The angle 6 between the ct and ct-axis is then given as

v
tan(f) = —
n(e) ="

We can graphically construct the z-axis by plotting two light pulses at the same time
on the ¥ = 0 line, moving at 45° in both inertial systems. Thus, we immediately find
that the z-axis is also tilted by the angle 6. A diagram of this type is called Minkowski
diagram.

THEORY OF RELATIVITY AND COSMOLOGY 9



Bibliography

Image of t axis by axial symmetry
with respect to the median axis

ct/ =x . ) .
/ = After similar reasoning concerning
events of constant t # 0
ct t
X
> -
X
. / /
— 452 (2] / /
reflection event = >

Figure 1.1.: Construction of the O and O systems in the Minkowski diagram

We will now write down the most general transformation that connects these inertial
frames. For this we impose the important condition that the transformation is linear.
This is justified by the fact that in our diagram, straight lines are mapped to straight
lines and areas are preserved. We simply write this transformation down, for a derivation

see [6].
)= 7))

v is a normalization factor that is unknown so far, but we know that
e ~ can only be a function of v or ¢ or both

e 7 can only depend on |v| (if we rotate the coordinate system the norm should be
preserved)

e If O moves with —v relative to O the transformation should give us back O.

We can determine v by doing a double-transformation (O — 0,0 — O:)

ct\ 1—%_1%025
) "\~ o1 )T e 1) e
1

==
’U2
)

THEORY OF RELATIVITY AND COSMOLOGY 10



1.3.1. Lorentz-Contraction

Alternatively we can calculate v by using A - A~! =1 and

a B\ © 1 [(d —b
(o) wmals )
Note: In the following, we will often use A for a general Lorentz Transformation (LT),
and § := v/c will be used as an abbreviation (later we set ¢ = 1, so § = v). This factor
is called Lorentz factor.
In addition, we will use the common signature in cosmology (—, +, +, +) (versus (+, —, —,
in high energy physics) for the metric tensor. This changes a sign in some places (es-

pecially in some norms, which follow from the preservation of the length element), but
leaves the structure of the equations invariant.

to avoid confusion, I will try to consistently use the notation v (bold) for 3 vectors
and ¥ (vector arrow) for 4 vectors.

1.3. Consequences of Lorentz-Boosts

1.3.1. Lorentz-Contraction

We imagine a staff at rest in O with the length [ hat. What is its length in O? We will
go back to graphic:

2B — =B = 2@ — ¢

=29 -1 =z°

because we chose our systems to fulfil 24,74 = 0. We now compute the speed:

z¢ — 2P c
V== =1 — 1

B C
t¢ —t

o

(5e) = (5 7) ()

THEORY OF RELATIVITY AND COSMOLOGY 11
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1.3.2. Time dilation

Using the above equations, we obtain:

{ctc = y(ct® — Bz%)

¢ = (2 —vtY) =1

[ =7l

So the staff is the longest in its rest frame!

1.3.2. Time dilation

We place a clock that rests in O and ticks every At. O moves again at v in the z-direction
relative to O. We are looking for At. We examine two events:

First tick: (Z,t1) «> (21,11)
Second tick:  (Z,t2) <> (22, 12)

We carry out the LT and receive:
cAt = yeAt — nga:
0=Az = —7%-0At+7Aa:
We put Az from the second equation into the first one and get:
cAt =y -c(1— %) At

———
1/~2

N’
>

= | At = yAt > At

Times are thus the shortest in their rest frame!

1.3.3. Composition of Velocities

Unlike the Galilei transformation, the Lorentz transformation does not simply add up
velocities:

A(v1)A(v2) # Mw2)A(v1) # A(v1 + v2)

We envision three systems, where O moves at velocity v relative to O and O moves at
w relative to O. The added velocity is then (proof exercise 1, task 1)

Aw)A@w) = A (f: Z)

THEORY OF RELATIVITY AND COSMOLOGY 12



1.3.3. Composition of Velocities

1.4. Intervals and Lorentz-Transformations

In “classical” mechanics (Galilei transformation, hereafter called Galilean mechanics) we
know that the norm ¢ is invariant under

e 3D-rotations

e 3D-translations

We measure the norm by d = \/Ax2 + Ay? + Az2.

As we have already seen lengths and times are not preserved in SR, but it is true that

©°% is invariant under

e 3D-rotations
e 4D-translations

o Lorentz-Boosts

So we need a new invariant under Lorentz transformations. This is (proof in exercise
1, task 2)

As® = —A? + Ax? + Ay + AZ?

The square should be viewed with caution, as it is not positive definite. In partic-
ular:

e As? =0 Events are separated by a light ray, we call them Light-like interval

e As? < (0 Events are separated by something slower than light. We call them
Time-like interval

e As? > 0 Events can not be connected by any world line, because the speed of light
would have to be exceeded. We call them space-like interval

Since As? is invariant under LT, the type of event is j
_— T
= ‘

the same in all inertial frames. In particular, how-
ever, this also removes the concept of simultaneity
(see ex. 1, task 3). This makes it clear that only cer-
tain events (time-like, light-like) can be perceived by us
at all. We now want to write down the general Lorentz
transformation, which consists of a Lorentz boost and a
3D rotation. To simplify the formulas we will consider
the case of a z-direction boost and a rotation around
the z-axis:

AAST HIGHT CONS

1 0 0 O v —yB 0 0
0 cosf sinf O -6 v 00
0 —sinf cosf 0 0 0 10
0 0 0 1 0 0 01

THEORY OF RELATIVITY AND COSMOLOGY 13



1.5.1. Absolute geometrical objects

1.5. Lorentz-Algebra

1.5.1. Absolute geometrical objects

Since we want to transform from one coordinate sys-

tem into another, but despite frame dependency, things need to exist independently of
coordinate systems!, we try to find well-defined objects, which we call absolute geomet-
rical objects and which we can use to construct other physical variables. These are for
example:

e Fvent: An event is well-defined and has a place and a time, even though the
individual components {zZ} are frame-dependent.

—

e Vector between two Fvents: Since events are well-defined, the vector E;FEs is also

well-defined. Again, although v = {v,} is absolute, its components change when
transforming into another base.

o Scalar fields: A scalar function ®(E) is absolute, it too can be represented in a
base, with ®(z,) being frame-dependent though. If we now transform an event into
another coordinate system, we also need to transform the scalar field to preserve
totality.

E:z,— 7,

= O(x,) = P(Z,)

e Scalar products Uy, g = s = U - Ug. The scalar product is completely
independent of basis in the sense, that

It is thus a Lorentz-invariant.

e Direct product U4 ® vp with
(U4 ® UB)ap = Va.aUBg
1.5.2. Lorentz-Algebra with standard vectors and matrices
For an event we will use the notation:
E: =z, T (orfor...)
and for a vector:

AB . Vas T)&

'We cannot just make objects disappear by switching frames

THEORY OF RELATIVITY AND COSMOLOGY 14



1.5.3. Lorentz-Algebra with Covariant notation

For a LT we need a sum, which we will usually leave out in the following (Einstein
notation):

Tag = E A&axoz
o

The summation over « is often called contraction (since we essentially contract one
dimension). The indices are switched for the reverse-transformation:

Vectors transform like coordinates:
Va = E A&ocvoe
o

When we look at the gradient of a scalar field it quickly becomes clear why we need
co- and contravariant vectors. Here we will use the names vector and covector. If we
consider a small variation d® we obtain:

od

d® = — dz,
0%, o

By LT, we realize that we need an object that transforms with A~! to leave the scalar
field invariant:
- 0P
-1
dd = A&aa_xaAdﬂ dQUB

We call the objects that transform withA~=! covectors. In particular, we see that scalars
that are invariant under LT always have to consist of a composition of vectors and
covectors.

1.5.3. Lorentz-Algebra with Covariant notation

In order to be able to unambiguously classify vectors (contravariant) or covectors (co-
variant) in complicated calculations, we now introduce the following notation:

Index up: Contravariant index v“

Index down: Covariant index v,

Latin Letters: i = 1,2,3 (3D-space)

Greek Letters: a =0,1,2,3 (4D-spacetime)

THEORY OF RELATIVITY AND COSMOLOGY 15



1.5.3. Lorentz-Algebra with Covariant notation

Lorentz-tranformation
We implement our new notation:

a
Aso  becomes A%,

Here we have left the order of the indices equal to underline the tensor nature.
Thus, a vector transforms like

—Q [o% @
v—gAav
«

It can already be seen that two indices, one appearing at the top and one at the bottom
are contracted (summed up). This is no coincidence, the order of tensors must be con-
served, and the symmetry of the LT, as discussed in the last section, requires contracting
over a co- and a contravariant object. This brings us to the next convention.

Einstein sum convention

Since we contract always on the same indices, one of which is a co- and one a con-
travariant, we will omit the sum-sign in the following. This more compact notation is
called Einstein sum convention.

Tensors of rank
If we want to Lorentz-transform any tensor (e.g. Raﬂv) we need to apply the correspond-
ing LT to every index:

Scalar products between vectors
We have already constructed the Lorentz transformation to leave As? invariant. By
rewriting As? we get:

As? = —At? + Az? + Ay? + A2
= Axt'n,, Az”
= Az AT
= Azt A N, Ax”

which gives us a transformation for 7,,:

N = Aﬁunﬁz‘/ADy

We call ), the Minkowski- or metric tensor. It is of rank

0 — “Contravariant” rank
2 — “Covariant” rank

Rang : (

THEORY OF RELATIVITY AND COSMOLOGY 16



1.6.1. Proper time

Furthermore we can explicitly write out 7,,:

100 0
(o 100
=10 01 0

0 00 1

Note: This metric only holds in SR, in GR it becomes considerably more complicated.

The metric tensor enables us to rewrite the scalar product as:

«

U-w:va-na/g-wﬁzvaw

Explicit LT in particular shows that the scalar product is a Lorentz-scalar. (It is also
visible the structure, as it is a contraction of a co- and a contravariant vector)

We furthermore see from
Uls Ny = Uy

that we can identify n as a index-lowering tensor. Assuming the existence of an indez-
raising tensor N*, we immediately find that this tensor should be the inverse of 7,,.
With 7, being its own inverse this gives:

NW = (nlw)_l = Nw = "

1.6. Lorentz-vectors for physical variables

In classical mechanics we defined our variables as 3-variables (v,a,F,...) and found some
laws (E = 0,ma = F'). However, these no longer necessarily apply in SRT. In particular,
we want to express all quantities by 4-vectors, so that we get back the structure of our
equations after Lorentz transformation on both sides. For this, we have to generalize

our old laws to new ones. This first requires some definitions:

1.6.1. Proper time

If we again use the concept of world lines, we can draw a small distance separating two
objects into our diagram

d7 = (d2°, dat, da?, dz?)
We then have two possibilities for constructing the proper time:

e Constant velocity: There is a rest frame fulfilling dZ = (dz°,0,0,0). In this frame

the proper time is given by ¢t = 7°.

THEORY OF RELATIVITY AND COSMOLOGY 17



1.6.2. 4-velocity

o Acceleration: At any given moment we can find a rest frame with the same char-
acteristics as above (MCRF, Momentarily Comoving Reference Frame). t is then
given as the integral of dz° over all MCRFs.

The proper time is the time, that is measured by an observer in the MCRF,
while the coordinate time is obviously dependent on the choice of coordinates and
does not always have a direct physical interpretation.

Note: In literature the proper time is often written as 7 (in contrast to the
coordinate time t). For now t will be written as 2° though, which is also a consistent
notation, later in GR we will use 7 and ¢ when we switch to spherical coordinates.

0 4

x01

Figure 1.2.: World lines for a inertial frame (left) and an accelerated frame (right). It
immediately becomes clear why the condition we imposed on direction and norm
uniquely defines the proper time.

1.6.2. 4-velocity

We motivate the definition of 4-velocity from classical mechanics where the velocity is
given as v = i—f. We generalize this to SR by taking the 4-vector and the proper time.
This is a Lorentz vector since the length transforms with A and ¢ is a Lorentz scalar:

. d7
U=— 1.6.2.1
% ( )

THEORY OF RELATIVITY AND COSMOLOGY 18



1.6.3. 4-acceleration

Uis tangent to its world line. In particular we find for the norm of U:

dz®  daf
At e Tqr
 da®n,pda’”
S de?

_ ds? dt?

e de

—

U.-U =

So we can alternatively define U as the Lorentz-vector which is tangent to the world line
with norm —1.

In practice we sometimes see the case where only z° is known and ¢(z2") has a complicated
form. Then we use the chain rule and get

PTG LA A TN
020 dt 0x0 dt N

Which gives us a handy way of calculating dd—fC::

0 da® 1
d ()

(We will use this relation in ex. 3, task 3.3)

The explicit form of the 4-velocity is given by:

leCRF =(1,0,0,0) = U= (v, yv1, YU2, YV3) (1.6.2.2)

1.6.3. 4-acceleration
The definition of the 4-acceleration follows directly from the definition of the 4-velocity:

U 7

=T A

In particular the 4-acceleration of an arbitrary MCRF is always perpendicular to its
4-velocity. Geometrically the four-acceleration is the curvature of a world line.

1.6.4. 4-momentum

We define the 4-momentum in analogy to the classical momentum as

ﬁ:m-(j
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1.6.5. Energy in arbitrary frames

We immediately see, that p'is a Lorentz-vector (m is a frame-independent scalar). We
can then perform a LT into another frame and see that

Pucrr = (Mm,0,0,0) = p= (my,myvy, myvamyvs) = (E,p1,p2,p3)

whereas F is the energy in our frame and p = p; is the 3-momentum. Why is the
0-component F the energy? This question will be clarified below:
First we do a Lorentz-boost in the z-direction out of our rest frame.

_ 1 v\ _
pz(m,O)épzv(v 1)p=(7m,’ymv)

In order to find a connection with the energy we first look at the classical limit:

mo v?
2
v

==F~ m 4+ m—
~~~ 2
rest energy N~

kinetic energy

We see that the mass is independent of the observer (at least according to our definition
of the mass, often in the literature E is called “mass”. While this is a valid way of
defining mass, we then have to call m the rest mass which would not correspond to our
intuitive perception of mass). We calculate the square of p:

—

p-ﬁ:mﬁ-m(j:—rrf as well as
(C

Pnasp”’ = =B+ (')’
From this we get the (very famous and practical) equation

E2 _ m2+Z(pZ)2 )

In summary, we find the following properties of the the 4-momentum:

e 7' || Worldline

!

o p-p=—m?
opozE

1.6.5. Energy in arbitrary frames
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1.6.6. 4-force

We imagine a particle and an observer moving at Observer lives in
different speeds. We call the particle’s rest frame P its own, frame
and the observer’s O. We look at both systems from a £ 4 0 P
third frame G which moves relative to O and P. T Pasticle
We know pparticle and (jobserver as seen from G. If we
now want to compute the particle’s energy as seen by
the observer. f >
Since each of the three systems sees a different energy bp
of the particle, we need to define a Lorentz-invariant
which we can compute in any frame which will give us
(Eops). We define Eqyps as

Eovs =—p, - Ug
Lorentz-scalar —Obs 770bs
= -, -Us

—0,0bs

:pp = EObs

Since this is a scalar product of two Lorentz-vectors it is invariant under LT and thus
gives us Fops regardless of the frame we compute it in:

Eobs = py - Up — ZP;US

By explicitly calculating the scalar product we see that Eqps in fact corresponds to

EObs =m: 7(v0b87 Uparticle) .

Now that we have our energy defined, we need to verify that it satisfies definition of
energy in a physical sense. In particular we need to check the conservation of energy.
To do this, we define the 4-force and examine the conservation laws.

1.6.6. 4-force

The 4-force is again defined in analogy to the classical force (derived in [6]) and gives us
postulate C (see 1.1):

dp dU 7

= m— :md):
dt dt

We see no (obvious) connection between 4-force and 3-force from this definition. This
will be discussed later.

Using this definition we see that if no force is applied to an object conservation of
energy and momentum still hold:

Fooo dp’ 0= Cil—f = (0 conservation of energy
dt % =0 conservation of momentum
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1.6.7. Massless particles

1.6.7. Massless particles

For a massless particle, we have the problem that we cannot find a rest frame since in
this frame ¢ = 1 would be violated. This also prevents us from finding a proper time
and therefore we have no valid definition for @ = i—f . Taking the limit m — 0 would
also not solve the problem since # would diverge while while ds? = —1. This forces us

to chose a different approach by just defining

‘ﬁ: (E7p17p27p3) ‘

with

[par”] = 0

We define E as the energy, which we measure in our reference frame, which allows us
to construct the momentum from the direction of the particle and the condition above.
We check if these definitions are compatible with our previous ones:

e p'is (obviously) a 4-vector
e E? = m? + p? is consistent since m = 0 gives us the correct energy

e The energy which an observer measures is £ = h - v

With this we can now calculate the relativistic Doppler effect.

1.6.8. Doppler effect
We look at two reference frames G and G, with
p=(E,—FE,0,0) E=hv
p=(FE,—F,0,0) E=hv
(Each of the frames sees the light ray moving away from it).
P = Aaﬁpﬁ
P’ = Aoﬁpﬁ =vE +yvk

14w
1—w

= hv = ~vyhv(l1 4+ v) = hv

We thus get a shift in frequency of:

1+v
1—w

AN

In the classical limit we get the same proportionality as with the normal (acoustic)
Doppler effect:

Av 14+
v 1—w

—1=v+0?
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1.7.1. Number flux vector

1.7. Relativistic hydrodynamics

This part will focus on relativistic hydrodynamics. The goal here is to transfer n(x),
p(x), P(x), T(x), that is, thermodynamic quantities to the theory of relativity. We will
look at three different scenarios:

e Dust: Collision less particles, particles keep their velocities

e Perfect fluid: Strong interaction between the particles = (isotropic) pressure,
thermodyn. equilibrium

e Imperfect fluid: Weak interactions = viscosity, no thermodyn. equilibrium.

We will look at the first two cases as limits of the (only realistic) third case and intro-
duce the concepts of the number-flur-vector and the stress-energy tensor by using the
exemplary cases above.

1.7.1. Number flux vector

As we will see below, the number density n = %, which in thermodynamics is a con-

served, intensive variable (at least in thermodynamic equilibrium), is not conserved in
relativity due to the volume being observer-dependent. Therefore we need a new type of
4-vector, which describes the number density and transforms like a Lorentz-vector. To
construct this we will look at two cases:

Dust with uniform velocity

In the case of dust, where all particles have the same velocity v there is an MCRF in
which all particles rest. We can then define the number density n(z®) = % which is not
Lorentz-invariant, which we can see if we perform a Lorentz-Boost into another frame:

O — O with velocity v in e;-direction
_ 1
V=Az' Az? Ax® -V = ZAzt - Az Ag?
Y

We thus get
9N
n=-—=myn

Vv

One can easily see, that n transforms like the 0-component of a Lorentz-vector.
Hence we are searching for a 4-vector with the components

(..) =, L5 )
We identify the 3-vector f as the particle number flux. With this in mind we construct
"

#particles which cross the L e;-plane

ft=
surface - time
n-S-vtAt )

S At
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1.7.1. Number flux vector

Now we want to check if we indeed constructed a Lorentz vector. If we take the MCRF
of the dust O and another frame O which is moving in e;-direction relative to O we get

ft=f'- (Velocity of O in O)
=n-(—v) =—ynv
We thus get the transformation from (n,0,0,0) in O to (yn, —ynwv,0,0) in O which is
the desired property for our 4-vector. We call this Lorentz-vector number flur N. In
general we can write it as

Il
S

MCRF *

—

N -

==
(iR

_ 2 7 2
= nycrr " U - U = —nycrp

From the norm of U we obtain a very easy way to get nyicrr:

NMCRF — \/ —NN: \/—NMN“

Particles with arbitrary velocities
If we have many particles with arbitrary velocities, it is clear, that we can only get a
Lorentz-vector if we define N as

N=Y 17,
p

VAMCREp

The reason here is that N can only be a Lorentz-vector if the factor % from above is
Lorentz-invariant. We therefore see, that we need to calculate V' in every particle’s rest
frame and cannot just simply factor out % from the sum. Fortunately, however, we have
a relation for scaling the volume V' = ~V. This gives us

— ]_ —

N = —U,

=,
=520,

p
_ (ﬁ ZPU; vag Zp“i)

\v vV vV

For this, the definitions of U, from (1.6.2.2) was used. But since N is a 4-vector, we
can find a frame with N = 0 and have thus found a N° = nycrp. The “MCREF” is
to be viewed with caution, since this is no true rest frame (the thermal velocity of the
particles still exists), but only moves at the bulk velocity of the particles.
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1.7.2. Stress-energy-tensor

1.7.2. Stress-energy-tensor

Let us now turn to the energy density p(x®). It shall be of the form

ZPEP_N<Ep>
v oV

Again we look at different cases:

Dust
If we naively transform from the MCRF into any arbitrary frame we get

E:m — ~ym
Viv = 4V
This means, that p transforms like

_Nm Nom
v _

P

So we have to consider an object of a higher rank than a vector. We define this tensor
SO

T —T% = p
Which gives us the right behaviour under LT. We define the whole tensor as the tensor
product (derived in [6]):
T=p@N=m- nucrer-U®U, T = TP = m - nycpy - UUP

Since two identical vectors occur in the tensor product, the stress energy tensor (SET) is
symmetric and of rank ((2)) Since furthermore v = (1,0,0,0) in the MCRF, this means
that in this frame 7" is 0 in all components except T° = pyicrr.

Let’s explicitly calculate an LT of a SET. Imagine again a frame O, which moves
relative to the MCRF with —v. We are boosting in a general direction. Then A(—v)
takes the following form:

SN o R

1

YU

A(—v) = N2
v’

The unspecified part contains more complicated terms, luckily we do not need those
terms. With this we get

T% = A(~v)%, - A(—v)’, - T
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1.7.2. Stress-energy-tensor

We identify the components of T as

o7 = 2T — 2y = p = energy density
o0 = T = 42T = Gyt = energy flux in e;-direction
= (my")) (vnucrr) = P = momentum density in e;-direction

2 Y p Yy

o1 = v T = y*v"v/m - nycrre
= (ymv®)(ynucrr)v? = p'nv’ = p'au’ = j-momentum flux in e;-direction

= ¢-momentum flux in e;-direction

Gas

In the general case of gas, we always get a 7% but it takes very different shapes,
depending on whether it is a gas with (without) internal (external) interactions or fields
(scalar or vector fields). We will fist look at the case of a gas of collisionless particles,
the case of collisions is discussed below in 1.7.2 We already know

. MCRF
1 | L
=52, 5el,=5> % '%he0
p p
If we again look component by component:
1
T = v Z my, = energy density
P
u 1 L1 ol o
™" = v Z mY Vel = 1 Z(wpmvp) =V Z p, = momentum density in e;-direction
p p p
. 1 )
=TV = v Z Eyv, = energy flux in e;-direction
p
. 1 o
TV = v Z pyvy, = ¢-momentum flux in e;-direction
p
1 o
=7 Z v, = j-momentum flux in e;-direction
p

In component notation this gives us:
1
af _ -1, a, B
™= \V Z’yp Ppp
p
-1, «a, 8

1 -1
:VZ% m PPy
p

1 -1«
= 2"
V4
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1.7.2. Stress-energy-tensor

We can no proceed to go to the continuous limit by using the density in phase-space

B #particles ~dN
~ (space volume)(momentum volume)  d3z d°p

The stress-energy-tensor is then given as

v

m
T = /d3p f-% . (1.7.2.1)

This is the very famous formula for the stress-energy-tensor of a collisionless gas in SRT.
(In fact, we will see that almost the same is true in GR).

Note, however, that the stress-energy tensor is a local quantity. Even if we defined it
in terms of a volume, we only look at the case, where V' — 0, so at an infinitesimally
small region around a given point.

General case

Even though, in the most general case, the interpretation of T%? stays the same as above
we cannot find a rest frame, in which 7% becomes trivial. To prove this we look at a
gas of colliding particles:

1.
o S
%
We see, that even if we define the MCRF to fulfil ), p; = 0, the kinetic energy
does not vanish in this frame. However it is minimal at this point.

2. T vanishes in the MCRF for collision-free particles, but not in the general case.
We see in particular that 7% vanishes in thermodynamic equilibrium but not if the
system is not in thermodyn. equilibrium (we define thermodynamic equilibrium
as a state, in which the particles interact on very short timescales).

3. T% # 0 in MCRF, even in the collision-less case. In particular, in MCRF we can
identify T% as 3 x 3 stress-tensor, which describes the internal forces, which act
on the fluid. As an analogy, we consider a spherical balloon in which the particles
are located. With the force F' = ‘é—i’ the balloon can

a) move due to bulk momentum

b) expand due to isotropic pressure
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1.7.2. Stress-energy-tensor

c¢) deform due to anisotropic pressure

Y4

|
N

—_—

d) rotate due to viscosity

7

N

These possibilities are encoded in the 6 degrees of freedom of the (symmetric) T
tensor.

In particular, we also see that only case b) is compatible with isotropy (we will
see that isotropy is often a condition we can assume in GR). In this case T% is
diagonal in the MCRF (shown in ex. 03, task 2) and we get

T = psi

Note: In the following I will use p as symbol for the pressure to avoid confusion
with the momentum.

Perfect fluid

In the case of a perfect fluid, there are strong interactions between the particles. This
leads to the following effects:

1. Thermodynamic equilibrium at any time = no heat conduction
=TV =T"=0
in local MCRF
2. No viscosity = only isotropic pressure
= T = po*

(see above, shown in ex. 02, task 2).
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1.7.3. Conservation of the Stress-energy-Tensor

So the stress energy tensor is represented by

PMCRF 0 0 0
T8 _ 0 pucrr 0 0
0 0  pucrr O

0 0 0 PMCRF

in MCRF.

Since the property perfect fluid should be frame-independent we need to construct 7%
in Terms of Lorentz-Tensors as we did with the T-Tensor in case of dust. The 4-vectors
we have at our deposal are

e u2u” (bulk-velocity or center of mass velocity)
e 1*% (metric tensor

In the MCRF U®UP? gives us just a 1 in the 00-component so our S-E-Tensor needs
to contain a term pycrpU%UP. In contrary the metric tensor gives us a —1 in the
00-component and 1 for the iz-components. Since pycrp should cancel out in the 00-
component we see that T needs to be

7% = (pacrr + Prycrr)UU” + pricren™ (1.7.2.2)

Note: The same as we derived above for the perfect fluid also applies for a perfect solid?
and a non-ideal gas with isotropic, internal interaction.

1.7.3. Conservation of the Stress-energy-Tensor

We think of a small cube from which energy can enter and leave. We then have 6 faces
from which the energy can enter or leave. We express the energy gain of each face by
taking T (z° time, 2" =center of each face) and taking the derivative (not derived here)

oT® 9T 9T 9T

ox0  Ox! 0x? ox3

The same can also be done with p; instead of p which finally gives

oT0 N Tt N oT? N oT3 _0
00 ozl ox? oxd

We now introduce the convenient notation

pqﬂ:%;J

2Perfect solid in this context means isotropy and instantaneous thermodynamic equilibrium.
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1.7.3. Conservation of the Stress-energy-Tensor

With Einstein sum convention this gives

which gives a very clear insight in the structure of the equation. Sometimes this is called
the covariant derivative and is sometimes written as Vg.

The expression derived above only holds in the case that no external forces are ap-
plied on the system. In case of external interactions the stress energy tensor is not
conserved but we can summarize the external forces into F'* (actually this describes the
conservation of the conservation of the 4-Momentum flux):

T

o
s =
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2. General Relativity

2.1. Introduction to curvature

General relativity fundamentally relies on the concepts of differential geometry. In this
field of mathematics, the curvature of manyfolds plays an important role. To explain
this concept we will look at to new concepts:

1. Manyfold: A “smooth” space, which at every point has a flat,tangent space. In
principle this simply means that our space has no “spikes”, where the gradient of
the space is not defined.

2. Curvature: The curvature of space essentially means the same as what we nor-
mally perceive as as curvature (an analogy would be the curvature of the 2D surface
of a 3D ball). But how do we determine curvature? There are two ways:

a) With extra dimensions:
If we introduce an extra dimension (in this case the 3rd Dimension to our 2D
ball-surface) we can simply write down the equation

Az? + Ay + A2 =R

and get the curvature. Here it is important to note that although we used
our three-dimensional intuition, the law itself is two dimensional (R is fixed).
This leads to the second method.

b) Without extra dimensions:

Here we need the definition of an (arbitrary but .

regular!) basis {z'} and a law of infinitesimal P
distances. For example on our sphere we can 7

introduce the coordinates (6, ) ‘

(0,0) — dR* = R*(d6* + sin® 0 dp?) /

"
T B S A

'Regular means, that no different points have the same coordinates or in mathematical notation:
PEDPES T F Ty




1.7.3. Conservation of the Stress-energy-Tensor

We then define the infinitesimal distance di? on
a flat Cartesian space (which exists for every
manyfold , since we postulated a flat tangent space around any point):

di2 = (dz, dy) ((1) (1)) (32")

We thus get for the infinitesimal distance on the sphere

di* = dr® + r*do”

= (dr,df) (é 7?2> <3£>

which leads to the general law of infinitesimal distances:

dl? = da'g;;da? (2.1.0.1)

with the symmetric metric tensor g;;
What ways do we have to measure curvature? We will briefly discuss four methods:

e Draw parallel lines (which are on an infinitesimal scale flat). On a flat space these
will stay parallel indefinitely, on a curved space they may cross

e Sum the angles of a triangle. Only on a flat space the sum of the angles of a
triangle is 180°.

e Try to draw a sphere with angles of /2 between every line. In case of a flat space
the lines will meet, in case of curvature not.

e Parallel Transport a vector along a closed path. In case of a flat space the vector
should still point in the same direction after the transport, in case of curvature it
will be rotated.

2.2. Fundamental principles of General Relativity

The fundamental principle of GR is Galileo’s equivalence principle:

All gravitating-only? bodies passing through a point z* with a velocity v
follows a unique trajectory (which is independent of mass, charge, etc.)
This lead Einstein to the assumption that gravity is in fact not a “force” in the sense of all
other forces but rather a fundamental curvature of space(-time) and actually trajectories

are just straights on a curved space(-time) (geodesics). Why is this a curvature of
spacetime and not only of 3D space? Let us investigate both cases:

1. The curvature is the curvature of 3D-space:

2Gravitation is the only force acting on this body. This does not hold for electromagnetic, weak or
strong interactions, which depend on charge, colour,. ..
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1.7.3. Conservation of the Stress-energy-Tensor

If we look at the difference of throwing a ball in space <
and on earth we would see that with the gravity of
earth the curvature of the trajectory is much larger
than without. This would imply that the curvature

of space would be around the order of cm or m. We
would observe this by the means which we discussed © throw ball

earlier. pe

. The curvature is the curvature of 4D-spacetime:

Then even if the object falls along a straight ‘

line in 3D-space (e.g. vertical fall on earth) o

we get a parabolic trajectory in spacetime. Ball dropped
The curvature of this spacetime though is at this event
more realistic to what we can measure. This

becomes clear if we consider a 1 m flight and

. ~~ Plane parallel to (1,z)
use natural units:

Parabolic worldline (Newton):
(t—1t')2
93—

t=1s=23-10° meters of time

which is tiny (the radius of curvature of the order of the distance between the
Earth and the moon) and corresponds more to our perception of the curvature of
space, which we perceive to be flat.

We furthermore check if one initial coordi- .
nate and initial velocity results in a unique / Different angles between 1
and the worldlines occur due
trajectory. For that we do another plot, which . to different magnitudes of v
assumes that we throw an object at a given
event in a given direction but with different
initial velocities. We then see that different
v; give different initial tangent vectors
to worldlines, like we can see in the draw-
ing.

(tyx;,2;) b

t

This means that ansatz 2. seems to fulfil the conditions we imposed. This finding
leads to a major problem:
Special Relativity is only valid in inertial frames and especially assumes the existence of
inertial frames. But if there is gravity at (almost) every point in space we cannot apply
SR. Luckily we can simply look at the system from the point of view of an observer at rest
in a free-falling frame in the gravitational field. This observer will feel no acceleration.
In the (local) free falling frame, the observer has no means of knowing, that he is in a
gravitational field. This leads to the Einstein equivalence principle:

Physics is the same in any free falling frame with gravity as in any
inertial frame without gravity.
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2.2.1. Gedankenexperiment: Gravitational Doppler effect

We can now write down the three basic principles of GR:

(o) Special relativity is locally valid in a free falling frame (This naturally incorporates
the postulates of SR)

(6) Spacetime is curved and free falling objects follow geodesics on this curved space

(7) There is a relation between matter and curvature of space, which is called the
FEinstein equation. (In fact this will describe the dynamics of spacetime and gravity
itself)

We will see that we can already solve problems of GR by applying only principle a.
To look at effects of GR we now have two possibilities:

1. We can investigate the motion of free falling frames:
Here we would need 8 and ~, which we have not sufficiently investigated. But if
the gravitational field is weak, we can take the Newtonian limit?

2. We can do an experiment in a free falling frame:
Here we do not need to consider the effect of curvature of space, but SR holds. If
the particle is slow in this frame we can take the limit towards classical mechanics.

curvature,geodesics newtonian limit a = g
2. | particles fast/c w.r.t free-falling frame

1. strong grav. field weak grav. field

particles slow w.r.t. free falling frame
Classical mechanics

SR

This means, that we can look at the case of weak gravitational effects and fast particles
just by knowing the laws of SRT. In the following we will look at an example.

2.2.1. Gedankenexperiment: Gravitational Doppler effect

o=
[~ detector A

tower =¥
[height 4]

dete | photon
particle —|

[mass m]

—t detector B
ground .

The gedankenexperiment goes as follows:
We have a tower of height h, which is equipped with two ideal detectors.

3This needs to hold due to the consistency of nonrelativistic limits with classical mechanics.
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2.2.1. Gedankenexperiment: Gravitational Doppler effect

e Event Ey: at t;, detector A drops a particle of mass m.

e Event Fy: At t9, detector B collects this particle and transfers its energy to a
photon, which is emitted upwards.

e Event F5: At t3, detector A collects the photon and transfers all its energy to a
particle of mass m and drops is

and so on ...

Without GR we would not assume any impact of gravity on light but Einstein’s intuition
was, that the upward photon must lose energy on its way upwards, to avoid
perpetual motion (since the particle with mass gains energy by dropping).

The guess is, that the massive particle leaves at E; with

EFE) —
It reaches F, with
E®) = \/m? + p?
Since the gain in velocity is very small (Av = gAt) with h = gATﬁ, SO
Av = +/2gh ~10ms ™' < ¢ .
Therefore we can do a Taylor-expansion of the energy and get:

(2) o 4 So? — CAN
E ~m e+ gmy =m(l+gh) (+O .

If we assume no Doppler shift the photon would be emitted with E(2) = m(14 gh) but
since we need energy to be conserved the shift in energy for the photon needs to be

E®) ~ m(1+gh) 1+gh

1—gh

In fact this effect was experimentally confirmed by Pound & Rebka (1960) and Pound
& Snider (1965), which is astonishing, since the effect is only of the order

E(E3)

gh gh

_ ﬁ SI-glits 1 9° g 10_14
E(E2) Vs 2’ c?

Now we want to calculate the Doppler shift only using principle a:
We consider two free falling frames, which are both falling vertically with the acceleration

g:

e O momentarily at rest with detector B at 5, i.e. with F,
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2.3.1. Generalization of Special relativity

e O momentarily at rest with detector A at t5, i.e. with Ej

Since both frames have the same acceleration they move with a constant relative velocity
and are inertial frames. We know that at t3, O is at rest, while O is falling at

h nat.units
vojo = gAt = g(ts — t2) = 97 e

If we now use our Doppler formula from SR (see 1.6.8) we get (since O is at rest with
the light pulse and if O looks in direction of O it is moving away from him)

E© 7 1 — g0

— == 9%

E© v 1 +v5,0
The energy of the massive particle in O is

E© = EP> — m(1 + gh)

since the detector B was defined in O at t,.

We thus get
1—1)@/0
\———— = 1—-v5,0~1—gh +O(v*
1+U()/o 0/0 g ( ( ))

This confirms our guess! In particular we see, that the gravitational Doppler effect
follows from the Doppler effect in SRT.

Note: Since at the beginning we assumed, that the gravitational field, in which we
are is weak, this equation only holds in this limit. If we want to consider stronger
gravitational fields we need to know the curvature of space and will get corrections of
higher orders.

2.3. Metric tensor in spacetime

2.3.1. Generalization of Special relativity
In SR we have defined ds? as
ds* = da'n,,dz”
with
e dz*, dz¥ are contravariant

® 1), is 2-covariant and two coordinate systems are connected by the Lorentz-
transformation:
oxt  Ox¥
o o~ e
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2.3.2. Mathematical formulation

e 1/ are physical, inertial coordinates
In GR we want to define ds? in a similar way with
ds® = da* g, dz”
Here we find, that
e The metric tensor g, is 2-covariant and encodes the curvature of spacetime

e r/ are not necessarily physical coordinates, they only need to be “valid coordi-
nates™

e The coordinate transformation needs to be a bijection between events and coordi-
nates and it must be invertible

e At any point in curved spacetime we need a manifold, which has a tangent space-
time, whereas we demand, that tangent spacetimes represent the inertial frames

of SR.

2.3.2. Mathematical formulation

In any event E with coordinates =%, there exists at least one transformation
such that the metric transforms as

G (%) = G (T%) =y + O (2% — °)?) (2.3.2.1)

whereas 7, is the metric of the tangent, flat spacetime. We call this
frame Local, physical inertial frame (LPIF)

The O ((z* — z**)?) is important, since this is the higher order correction to the tangent
space, and correspondingly 7, .
Hence we can neglect the O ((z* — z**)?) in a small region around (z% — z**) and
everything looks like flat spacetime and the laws of SR hold. This means, that around
7**, the coordinates 7 are local physical and inertial coordinates® of a LPIF® and
GR automatically implies, that

SR is an approximation of GR in a flat spacetime, which is a local tangent
to curved spacetime.

4Coordinates, which satisfy the conditions, which we will demand in the following

SInertial: The metric is the metric of flat spacetime, i.e. has the right signature and is similar to
Nuv
Physical: The metric is normed, such that x° is the physical time of a clock at rest and /> (dz?)2
is the distance of an object at rest.

6This frame experiences no gravity effects.
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2.3.2. Mathematical formulation

In curved spacetime we can generalize our findings from the curvature of euclidean space
(see 2.1), which we expressed in formula (2.1.0.1) and get

ds* = da''g,, dz” (2.3.2.2)

whereas g, is the symmetric tensor of spacetime and the generalization of the Minkowski-
tensor 1), for curved spacetime. From this we see the following properties of curved
spacetime:

e ds? is invariant, just as in SR

e dz* transforms like a vector:

7.
whereas g% is a 4 x 4 tensor.

e Therefore g, transforms like a 2-covariant tensor:
_ Ozt ox”
0 = O o
In particular this means, that g,, transforms just like 7,,, which will be shown in

ex. 4, task 2

e Since we have to be able to change back an fourth between coordinates, the trans-
formation cannot be singular. This means, that the determinant of the jacobian
cannot vanish (for a proof see [8]):

det (%> #0

OTH

Furthermore this inverse, which transforms back needs to fulfil
guagau = (55
® g,, now plays the role of the indez-lowering tensor
Vg, =,

which switches a vector for a covector. In particular this means, that we can also
find a transformation between ¢* and g,

99" 9" = 9,9 = 0,9 = g

(since g and § are symmetric, we have no need to write g,” or ¢,% In the future
we will stick to this notation.)

"This is a very awkward notation which was chosen only to clarify the role of g. In the future we
will just write such transformations as ¢g®* = gwg“ag”ﬂ where we can just use Einstein’s sum
convention.
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2.4.1. Change from curved to flat spacetime

e The coordinate transformation, which links g,, to g, = 1, is not unique! This
can easily be shown if we look at three coordinate systems in a local, flat tangent
space around x*:

— Original coordinates: {z#} : g, (™) # N
— First possible transformation: {z*}: g, (Z") = 1
— Second possible transformation: {z"}: g, (Z") = 1

If we then consider the transformation, which links z and x

_ 01" oT”_
987 = Bk oz
by plugging in the definition from above we see that
I
i = pgE| . oz |
this means, that g%g must be the inverse of the Lorentz-transformation Ag,

since this is (by definition) the most general transformation, which preserves 7, .
So (locally) all possible solutions to the equation above are linked by Lorentz-
transformations.

2.4. Physical consequences of curved spacetime

2.4.1. Change from curved to flat spacetime

We will look at an event F and two distinguishable particles, whose worldlines go through
E. Then we can always find an inertial frame, such that one of the two particles is at
rest (i.e. G = nuw + O(T* — %), € is a tangent to the worldline and e; is orthogonal
to the worldline).

Then this frame is (modulo spacial rotations) uniquely defined by a transformation dis-
cussed above. The second particle passing through E then has a different inertial frame,
which is related to the frame of particle 1 by a Lorentz-Boost.

In fact we will solve many problems of GR by doing these steps:

e Start with a LPIF around the event of the emitter and characterize the physics
with SR

e Use the laws of GR to compute the worldline in curved spacetime

e find a LPIF around the observer and again use SR to compute what the observer
sees.

This means, that we can always define the properties of an object in a local physical
inertial frame and then generalize this by a change of coordinates (similar to the
MCREF in SR).
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2.4.2. Length-elements

Curved spacetime

2.4.2. Length-elements

What is the meaning of ds? in GR?
Like in SR it can represent an absolute measure of time or space but not both at the
same time! We will look at the sign of ds? to make this clear:

1. ds® =0:

If the events are closeby we can use eq. (2.3.2.2) <

and directly see that ds? = (alg—a%)) g, (2% — j et =x
x%) = 0, which means that the two events are 2/

on the worldline of light. <9

2. ds*(A, B) < 0 (for A, B close together):
Then +/—ds? is the interval of proper time
between A and B.

This holds due to principle («): In an MCRF
of A and B we get

ds* = —(d2")? = —(dt)? (see 1.6.1)

This can (obviously) be generalized to
ds* = da'n,, dz”

in an arbitrary (flat) frame. We then use principle (o) and the fact, that ds® is
frame invariant to find the proper time between A and B in GR:

dt—/—dazrn,dzr = dt =/—dztg,dz” (2.4.2.1)

Vv
flat space curved space

In the special case of a frame which is locally at rest this becomes

dt = /—dx9gpodx?

and if additionally goo = —1 (g = M)
dt = +/(dz0)?

which is the limit we wanted.
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2.4.3. Volume-elements

3. ds? > 0:
Then we call Vds? the proper distance between A and B. The reasoning goes as
above:
If ds? is spacelike we can find frames where A and B are simultaneous and find,
that

ds? = z:(dxi)2 = datn,dz” =:dP?

arbitrary flat frame

and we can call di? proper distance (or proper length).
In GR we then get:

dl = /datg,, dz” (2.4.2.2)

If g, = M we (obviously) get the limit from above, so our definition is consistent.

2.4.3. Volume-elements

We can follow the same logic to define a proper volume:

Since in GR the spacetime-volume element d*z = d°zd'zd?*zd>z is coordinate depen-
dent. We therefore want to find a frame-invariant definition of a volume element, which
we call proper volume dV'.

To find this we go to a LPIF {z®}, and define our proper volume in this frame:
AV = dz’dz'dz2dz®

As we know from the differential geometry if we change coordinates dV transforms like

_ OTH
dV = dz%dztdz%dz® = det (m) dz%dztda?da?
iy
whereas % is the Jacobian of the transformation z* — .

But since {2} is locally inertial its metric is just 7, which means that we can express
the jacobian in terms of the Minkowski-metric:

ozh 0z”

= i B

When we take the determinant we get:

-~ ozt ox”
g = det(g,,) = det (@) det (81:”) det(nzp)

N J/
- =

—det(92)”
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2.4.4. Scalar product of basis vectors

which means that the jacobian is simply given by

ozt : e
det (m) = Jacobian(z* — 7)) = /—g

x
which gives us the final (very important) formula
dV = /=g d2’dz'dz*dz? (2.4.3.1)

So if we want to do an integral over spacetime in GR we get

/dxodxldx2d$3 -v/—g {density, e.g. L}

2.4.4. Scalar product of basis vectors

If we take the scalar product of two basis vectors of coordinates e = d% we get:
ga : é’g = 55(%9#1/ = Gap (2441)

which gives us a very handy way of computing the components of g,, in any given
coordinate system:

Vo g = eu(z”) - 6, (z%) (2.4.4.2)

Of course if we look at locally inertial and physical coordinates {z%} around {z®} the
unit vectors are invariant (up to O(z® — x%)?), which we can write as

G (2%) = 1 + O (2% = 23)?) = Eu(a”) = Eu(ag) + O (2 - 2§)?)
Then we have the following equivalences:

& €, is locally invariant up to order 2 terms
oey,

& w(m‘”) =040 ((Io‘ — x%)Q)
9€u
= W(%) =0

2.5. Covariant derivatives

We want to generalize the definition of the covariant derivative from 1.7.3 to curved
manyfolds.
While one could naively assume that nothing changes except the metric, the expressions
become much more complicated due to the fact, that for a vector field V¢ we need
to not only take the derivative of the V¢ with respect to different coordinates but
also transform the basis vector(s) accordingly. For this new derivative we use the
notation
oV
P
As we see, now we have a new basis €, which we will need to find in the following. To
do this we look at different cases:

_ Y 2
—V;e7
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2.5.1. Scalar functions

2.5.1. Scalar functions

In case of a scalar function ¢(z) we obtain the same as in SR (since scalars are inde-
pendent of coordinate system):

g =
b= b0 =7

I»Ot

(2.5.1.1)

Therefore the total differential of course stays the same as well:

dé = ¢, dz*(+0O(dx)?)

2.5.2. Vector field

A vectorfield has a basis and thus V(z%) = VE(x*)e,(x*). Then the total differential
consists of the two terms:

ov )

7 B _ > B
dV = 9P dz” = 97 (Vte,) dz
LOVE 08, L g
= <€MW + V“w) dz

We see that we now have two terms, which are (at least explicitly) not in the same

. . oe, - . . . - . .
basis. But since % is a 4-vector in must have coordinates in the €,-Basis, which we

will call Christoffel symbols T'] 5

=172 (2.5.2.1)

They are symmetric (as shown in ex.5, task 2). With this definition we can factor €,
out of our differential and get

L [OVH .
dv = <Weu + V“Flﬁeﬁ,) dz”

Y
= (av e, +VQFZB€7> da”

oxP “

oV
= (W + V“Fgﬁ) 57 dz”?

~
—
=Vig

J/

(in the second step we renamed dummy indices to avoid confusion).
We see that VA(B is the y-coordinate of the derivative of V' with respect to z°.
Our total differential then becomes

dV =V, é, da”
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2.5.3. Covector field

Since dV is an absolute geometrical quantity, €, and dz® is a Lorentz-vector coordinate
so logically (and by construction) V9 is a true (i) Lorentz-tensor which accordingly
transforms like

A A& —1\B t/a
V;B_Aa(A )BV;B

This is why we call it a covariant derivative:

N~ N~ N~~~ 1 v
Non-Lorentz Non-Lorentz (0>—tensor

G)—tensor

(]i -tensor! % -tensor!

Since F% is not a Lorentz-vector we will never raise or lower its indices and thus our
notation of writing upper and lower indices on top of each other is justified.

2.5.3. Covector field

In case of a covector field we use the results from above and use the invariance of scalar
products in different coordinate systems. With arbitrary C,(z?) and V(2°) we then
do

o(27) = Ca@” V(") = by =CayVO+ GV}
= Coy VO + Co(VE = T3 V)

And by renaming the dummy index in the first term C, ,V® = C;s,V? and factoring out
V? we get

o= (Csy — T3 COVO + Co V2

Since the right term is the covector-field with the covariant derivative of the vector
field we identify the left term in the brackets as the covariant derivative of Cs5 with
respect to z7:

C(sw = C(;;y — ?VCO‘ (2.5.3.1)

This derivative is a (g) tensor.

2.5.4. General fields of arbitrary rank

In the case of a general tensor of any rank, we can just use what we found above while
paying attention to the right usage of vectors and covectors. e.g.

wa;a = Tu’{a + Tmpza + TWF%
T =Ty — TM"/FZa - TWFZa

v

Tul/;a = Tuu,oz + T’YI/ F#a - Tu'y FZ&
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2.5.5. Relation between the metric and Christoffel symbols

2.5.5. Relation between the metric and Christoffel symbols

Since the metric describes the nature of spacetime itself and we can always find a
tangent space where g, = 7,,, we express the Christoffel symbols in terms of the metric
tensor:

e (e (03 ag «
G () = N + O((2* = 2%)*) = = e g(xE) =0
x
Which directly implies that

wp(tp) =0= () =)

Since this holds in a LPIF and g, is a valid (g)—tensor it “normally” transforms with
A and thus in any frame we get

9uva = AupAVﬁAaaguu;a =0

Since we can show this in any arbitrary point since in every point we can find a LPIF
for every point this holds on our whole manyfold. The same argumentation can be done
for the contravariant g*” and we obtain the very handy result that

Juia = 9", =0 in any point (2.5.5.1)

From this we get the formula (will be shown in ex.5, task 2):

o 1 (07
P =359 (Gupw + Gov — Guv,p) (2.5.5.2)

2.6. Geodesics

2.6.1. Equation of geodesics

We already know that the worldline of an object describes its trajectory in spacetime,
whereas massless particles follow a light-like (ds®> = 0), and massive particles a time-like
(ds* < 0) curve.

This worldline is an absolute geometrical quantity, but in a given coordinate system it
is a function of its coordinates x®. Since the worldline is a line, we can represent the
functional dependence of its coordinates with a single parameter, which we will call A, so
r® = 2%()\). We can then define a (local) tangent vector to the worldline around (z*?):

T =

dxa(/\) —~ *03
o | Gl

A*

and different choices of A give us different f, which are colinear to each other in z*/.
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2.6.1. Equation of geodesics

Special case: A\ =t
If we chose A to be the proper time, we simply get back the 4-velocity which is clear if
we take the scalar product:

’_f . f — TagaﬁTB _ dz® da? (1.62.1) d_SQ

A T ae T
We can therefore identify T as the 4-velocity along the worldline:
= da(t
U= xd—t() en(z? ()| for A=t (2.6.1.1)
t*

General case

We now want to find an equation describing the worldline in the general case. This
evolution of the world line is what we call geodesic. We define it to be a locally flat
line, i.e.

aT T +d)) = T
DA, | d>)\ 2o
SO
Ozi(@g) _ P detde,

AV ) T e o an
A%z da* oe, dx”

~ e et (896" d)\)

@2s5.2.1) d?z® dzt . .\ dz”
= et Tufe)

And by factoring out €, and renaming the dummy indices to the ones mostly used in
literature we get the very important equation of geodesics

A2zt L dgco‘d_ac*f:f B
d)2 B ax dN

We now want to look at the implications of this equation:

(2.6.1.2)

e The same geodesics can be described in any coordinate system and in each coor-
dinate system by any choice of curvilinear® basis:

— In the general case A — f(A) gives us a different equation and thus also a
different solution.

— Any transformation, which is of the form
A= aX+b

leaves the shape of the equation and z#(\) invariant (since this is a second
order differential equation).

8curvilinear is just the fancy word for a curved coordinate system in a euclidian space (e.g. spherical

coordinates)
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2.6.1. Equation of geodesics

e The fact that it is a second order DGL also im-

plies, that we need two wnitial conditions, which
are 1 event and 1 direction.
This means that for every initial coordinate and
velocity we get one unique geodesic (which is
what we would expect from our intuition since
trajectories need to be unique).

e On a geodesic, any segment [A, B] gives the shortest path between A and B°.
In particular this implies, that geodesics are the generalization of straight lines to
curved manyfolds.

Alternative derivation using variation

While the derivation above may be the most intuitive approach if we want to derive
geodesics from the tangent space known from SR, if we assume geodesics to be the
generalization of straight lines we can also derive the equation of geodesics from the
principle of variation:

Hence we want to use the variation of v/ds? between two points:

dl = Vds? =/ gapda>dab

The 4-length (which we can choose as the proper time t in an an appropriate frame
but we will stick to [ for an intuitive understanding) of the geodesic then becomes the
integral of v/ds? from A to B. We can then parametrize z* = z*(\) with A € [0,1] and

get:
By ! dxe dzf
l = o d Oéd ﬁ: B T T d)\

We call the term in the integral the Lagrangian

di
o
If we now use variation theory 6/ = 0 we get the Euler-Lagrange equation, that we know
from classical mechanics (derived in [1] and [2]):
d oL dL
dAdiv — dav
We now carefully compute every term:

and see that

L (2.6.1.3)

9This is not the entire truth:
If we look at a compact space, there are always two directions, which we can take to on a geodesic
to go from A to B. Think for example of the sphere from 2.1, where we have two ways to move on
a geodesic from A to B. Luckily all measurements imply that our universe is not compact.
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2.6.1. Equation of geodesics

1.
dL 1 0gas Ed_xﬁ N 1 9?x® da” N 0?2f dx®
do7 2L 97 dx dx 207 | 9r0ax dx T drvox dA
=0 =0
(2613) L Ogop dv* du?
202 dldl
2.
oL 1 dz“ da?
- =P s8I sa
91 219 ( FPRRAMTY 57)
L, et 1 e
~Sar%ran T LYan
where we used the symmetry of g,5 and renamed dummy indices.
3.

d (oL _dto (1 Odx*dl
a\oir )~ o \ 29 o d
16) or®
=La (gfww)

d?z®  0gs, dz® dz®
=L/ g, ay
(97 & o A dl )

_z < d?z~ N 1 <8ga7 N 8gﬁw> daf dxa>

Jormqe T2\ (02 " Oz ) Al dl
In the last step we have again renamed dummy indices.

Altogether this gives us

,_ 4oL dL
T A0 dw

B d2x . 1 O0Gary  0gsy B 0gap ) da’ dz®
"9 o\ 9F T o Br ) Al dl
(2.5;53.2?;MFZXB

which (after renaming indices) altogether gives us the same equation of geodesics'®

d2z” . dx? dz©
+ J— —
di2 “Bqr di

10Note that the equation contains ! instead of A. We can generalize this equation to A by reversing the
transformation we did in the beginning.
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2.6.2. Consequences of geodesics as worldlines

Covectors

We have only looked at the equation of geodesics for vectors so far. Interestingly it turns
out that the equation has a much simpler form if we use covectors instead. It is simply
(will be shown in ex.6, task 3):

d?z, 1 dz* dz”

a2 29T T

(2.6.1.4)

or in terms of the momentum

dpe 1

—— = MoV
m dt 29;w,ap p

2.6.2. Consequences of geodesics as worldlines

Massive particles
If we look at massive particles m # 0 with momentum p* our worldline is time-like and
we can use what we derived above for A = ¢. Then

P =mU! =m—

dt

which, if we plug it into equation (2.6.1.2) gives us the equation of momentum
conservation

P e a8 g 2.6.2.1
m e ey 26.2.1)

Massless particles

Although we cannot just use proper time in the case of massless particles we can find a
A, so that p° = %—’C; is the energy of the particle. The reasoning then goes analogous to

above and we obtain

d 1%
% + T4 = 0 (2.6.2.2)

Physical interpretation

e Local tangent spacetime:
From the formulae above we can extract a deeper physical understanding of the
concept of inertial frames. In fact we have shown that

G = M + O((02%)?) & being in an inertial /free falling frame.
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2.6.2. Consequences of geodesics as worldlines

Indeed, if we use (2.6.2.1) and (2.3.2.1) we get that

Juv = Muv + O((5$a)2)

dp*
= — =0
dt

= p" conserved (locally)

Which means, that objects move in straight lines. This implies that locally

— All geodesics are straight up to O(A#?):
7% = A%+ Bt — t*) + O((t — t*)?)

= All velocities are constant: U® = B* + O((t — t*)?)
= All accelerations vanish: a® =0+ O((t — t*))

which is just what we would expect from an inertial frame, which sees no effects
from gravity.

e General spacetime:
In general, the simple formulae we derived above do not hold and we get a nonlinear
curvature of spacetime. This implies, that also velocities and accelerations vary.
This is how gravity manifests itself! The deeper knowledge, that we can pull from
this is that unlike all other forces, which we can quantify in the stress energy tensor
(see 1.7.2) but which is not a part of spacetime itself!!, the curvature of space itself
generates the effect, which we observe from gravity.

e Presence of a force:
In the presence of a force (other than gravity) the equation of momentum conser-
vation must be modified to include the 4-force and has the form

1
o eV = 0

Summary

We now know how to compute the path of a test particle in a given metric, which
corresponds to a given gravitational field. What we do not know is how to compute the
dynamics of massive particles (which change the metric while they move) in spacetime.
The connection between mass and curvature will be given by the Einstein equation,
which we will derive later but to do so we first need a more mathematical chapter on
the curvature of spacetime.

'We especially see this in the fact, that for any frame we can find a LPIF, so that g, = n,, but it is
not possible to find a specific structure of T"” in an arbitrary frame.
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2.7.1. The Riemann-Tensor

2.7. Curvature of spacetime

We know from the previous chapters:

e g, encodes all properties of the spacetime but does not explicitly imply whether

the manyfold is curved or not'?.

e The curvature of spacetime is encoded in the second derivative f(x) — f”"(x)

of the coordinates (which we would intuitively assume from analysis)

e The second derivative of g,, is not a single number, which means that several

numbers characterize the curvature of space

e I, only contains first derivatives and thus does not show curvature explicitly.

2.7.1. The Riemann-Tensor

We remind ourselves of the methods we presented in
2.1 to test curvature of space. We need to chose one
method and find a mathematical formulation for this
test. We choose parallel transport.

We can formulate the concept of parallel transport math-
ematically as

L V) =T

Am O =0 everywhere.

This means that
av £0 <« spacetime is curved
We now want to compute the components §V¢ of dV. we simply rewrite
V=V, V4+dV=(V"+V")é(a")
Since we look at small changes, dV should be linear in ‘7, SO

SV =(...)%V"

12Think for example of curvilinear (“soft” coordinates.)

THEORY OF RELATIVITY AND COSMOLOGY

ol



2.7.1. The Riemann-Tensor

Furthermore we see that (...)%; should depend on N s
the path. Take for example a small parallelogram, .
which is generated by two small vectors dZ 4, dZp (see s /2.\@%
picture). For small dz’}, dz’; we get only linear terms gf ;
and finally obtain i ﬁfl\‘,q\
4w

SV = (...)%,, daday V7 / L —

This tensor has the following properties:

e It is a valid Lorentz-tensor of rank (}) (the argument is like always: Dz, da', V7)
are all valid Lorentz-vectors so (...)%,, needs to be a valid Lorentz-tensor

o [f fully describes the curvature in a given event

We call this tensor the Riemann Tensor R%,, (z7).
We can relate R, to I'}, and thus to the metric. We will do a brief derivation of
the connection by using thinking about the parallelogram from above:

e We know that on each of the four sides % = 0 (by construction of the parallel
transport), which means that
N v dat i
_— = —ea pr—
dA HodA
o o & B
:>V;,u =0 = V,H __FM»BV

e We then write down the coordinate difference between the initial and final vector
in the point 27 after going around the parallelogram:

oV =Ve, daty +V, dap -V, daty =V, dalp

(We evaluate the derivatives in the middle of the sides of the parallelogram). We
then rewrite the derivatives in terms of the Christoffel symbols and get:

SV = — F?ﬁdx2V5 _F%dﬁé‘/é-{-I‘g‘ﬁdx'j‘Vé—l-Fgﬁdx%Vﬁ/

in My in Mo in M3 in My

e We rearrange the terms, so that M; and Mj are together as well as M, and Mjy:

c= TV =ToVP | daty + |To,VP = T0V7 | daly
in M3 in My in My in Mo
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2.7.1. The Riemann-Tensor

—
and since dz'; describes the coordinates of M; Mz and —dx” describes the coordi-

—=
nates of MyM, (becomes clear from the way we go through the parallelogram) we
can rewrite this to

0 0
= [87 (rgﬂvﬂ)} dalpday — {@ (rgﬁvﬁ)} dz'ydat

= | Vﬁuvﬁ+r VO L dalgdaly + [T, V7 = TRV, | dafpday
= [[05,.V Fﬁ V7] dafydaty — [T, V7 = T, V7] dajpdaly
= [Thu — 30 Zﬁ hsw Dol dalpda VP

Which means, that the explicit representation of the Riemann tensor is given by

R, = 1 (2.7.1.1)

a T a o
By, B,y op Vﬁ ovt pB

Since the Christoffel symbols depend on the first derivative of g,,, R%5,, has to depend
on the second derivative of the metric. The relation to g,, though is not trivial.

The only particular case, in which we can easily see an explicit form of the Riemann
tensor is for the LPIF, in which

G =N + O0(02%) = T9,=0
o 1 (e70n
=R Buv — 59 (ga%ﬁu — Gou,pv + 9Buov — gﬂu,a,u)
Note: This result might at first seem counter intuitive, since the LPIF is defined as
locally flat tangent metric. It is important though to remind ourselves, that the flatness
exclusively applies to the tangent space but not to space itself. From our findings we

can extract the following properties of R% ,:

e From our geometrical construction directly follows, that R®
time (even in complicated coordinates)

s = 0 in flat space-

e Since the (;) Riemann-tensor is a proper Lorentz tensor we can lower one index (or

raise/lower any number of indices for that matter) and can define the (2) Riemann
tensor:

)
R, = 9 Rspu

e Since R is a 4 x 4-tensor it has 4* = 256 components! This is a lot but luckily
we do not need to calculate this many components, since only 20 of them are
independent. This follows from symmetry considerations

Raﬁuy - _Rﬁa n = _Raﬁ v = +R/LV OZ/B
[ | -
and from the first Bianchi identity (for proof see A.1):
R gy = R0, + B + 1% 5, = 0
For a full proof see A.2

Buv
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2.8.1. Requirements to a covariant relation between curvature and matter

2.8. The Einstein equation

With the Riemann tensor we now have a mean to measure the curvature of spacetime
and know how to relate this curvature to the metric. We furthermore know, that matter
generates curvature. But what is the relation between matter and curvature?

curvature <> matter
We know:
e Our theory can only involve valid Lorentz scalars/vectors/tensors.

e In the limit of small masses (small energies) we have to get back our Newtonian
theory with

ma =mV¢ = da=Vo

geodesic

{

Thus we know that the Einstein equation must have the Poisson equation as
newtonian limit:

A¢ = 41Gpm,
with the gravitational potential ¢ and the mass density py,.

We will derive the Einstein equation by argumenting. We do this in steps:

2.8.1. Requirements to a covariant relation between curvature
and matter

We know from SR, that the energy density p, which is the T%-component of the stress-
energy tensor (see 1.7.2) becomes the mass density in the limit of small velocities!'®:

v
P = TOO 7 Pm

Furthermore we know, that the curvature must depend on some form of second order
differentiation, so that we get the shape of the Poisson equation'?

(curvature)® = (... )T" = (g") 92 = (...)T"

Now what can be the left hand side? We need the curvature to have two indices, it
needs to depend on the curvature of spacetime and it needs to contain a second order
derivative.

We look at the variables, which we have introduced in the last chapters and see, that
we have

BE2 — p?2 4 2 P30 2
14WWe need the form of the Poisson equation, since we require, that although the Einstein equation is
local, the curvature needs to depend on some matter outside the area we are looking at.
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2.8.1. Requirements to a covariant relation between curvature and matter

® g, Depends on the geometry and is a true Lorentz-tensor but does not contain
derivatives

e I}, Depends on the geometry and contains derivatives but is not a true Lorentz-
tensor

e 1?5, Depends on the geometry, is a true Lorentz-tensor and contains derivatives.

We thus need to build our equation with the Riemann-tensor.

The problem we immediately see, is that the Riemann-tensor has the wrong rank,
so we need to contract it with something. We use the metric tensor and try contracting
different indices:

o Try ¢*PRop = R’ suv- We see, that this has the right rank, but vanishes due to
the antisymmetry under the exchange of indices.

o Try g**Rupu- This tensor does not vanish and thus is a valid choice for our
tensor. We call it the Ricci-tensor:

9" Roppw = R, = Ry, (2.8.1.1)
Of course we can also raise its indices, to make a (g) -tensor:
RoB — gaa’gﬁﬁ/'Ra,B,
Furthermore the tensor is symmetric, which we can see from
Rys = 9" Ravps = 9" Rupav = R,
o Tty g™ Ropuw = =9 Rapupy = —Rg,- So this gives us no extra information.

So altogether we see, that

All contractions of Riemann-tensor leading to a (g)-tensor are either 0 or
+Ricci.

Can we go even further and contract the last two remaining indices of the Ricci Tensor:

gaﬁRaﬁ - Rﬁﬁ - gaﬁguyRuauﬂ =R (2812)

which we call the Ricci-scalar'®.

We put our knowledge together and find for a possible equation:
(CORM™+(.ORG™ 4+ (..)g"™ = (...)T™

Is this equation unique and the only solution? No! It is just the simplest equation
fulfilling the requirements. We could add terms like f(R)g" and g(R)R* but these
only make our problem more complicated and so far the Einstein equation describes all
observations perfectly. We can therefore proceed.

15The physical interpretation of the Ricci scalar is a bit more subtle, one could say, that it is a kind of
“average curvature”, but this is very sloppy and not really well defined.
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2.8.2. Equations of motion
We know from SR, that

which is true in any frame and thus also applies in GR. This means, that we can impose
the constraint, that

[ OR™ 4 (. ORG™ + (. )g"™ ], = [(-..)T™], =0

Is this a real constraint or does this fol- Cosmology
low directly from the construction of our the- ~ o
2 Evolution of Distribution of
ory! matter matter over
In fact we see, that this is not a real con- space
straint, since we already built our theory to
be self-consistent and incorporate the evolu- . Einstein
. . namics equation
tion of matter (and thus energy) itself. !
This means, that the Einstein equation (by Geodesics Curvature of
construction) needs to take the form Spacetime
Equation of
(Raﬁ + RMQQB + )\gaﬁ)@ =0 (2821) geodesics

We look at the appearing terms one by one and look if they vanish:

e (A\g*%).5 = 0, since we showed, that go‘ﬁﬁ = 0 in any frame (see eq. (2.5.5.1)). So
this term can stay as it is.

o (URg*®).5 = uR.5g*" + uRgaﬂ;B = uR.59*? # 0 in general. So either this term
——

cannot exist or the first term needs to cancel it out.

e R 5 is the hardest to calculate. The problem can be largely simplified though.
We can show, that (for proof see A.1)

Raﬂm/;)\ + Ra,@)\u;l/ + Ra,@l/)\;u =0

which is called the second Bianchi-identity.

We can contract this tensor twice with the metric ¢** and get a (g) -tensor, which
is called the contracted Bianchi identity (also proven in A.1).

we contract two more indices with ¢°* and rename dummy indices and finally get
the twice contracted Bianchi identity (proven in A.1):

2: Ral/;oé B R?V =2 gBERBV;e - R;V
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We can apply the metric ¢** to both terms in order to raise all indices and rename
dummy indices, which gives us

Q(QVMQ/BEIR’/J’V;E) - g/WRW =0

which we can simplify by swapping the dummy indices € «+ v which finally yields'¢

(- Lm) ~o

)

We call the term in brackets the Einstein tensor GH*:

1
GH = RMW — §g‘“’72 (2.8.2.2)

This means, that we have to choose ;1 = —%
in the Einstein equation (2.8.2.1) and the
equation will be automatically fulfilled. A re-
mains unconstrained. We call it the Cosmo-
logical constant A and view it as a physical constant!”.

The Einstein equation then becomes:

GP + Ag*P = kTP (2.8.2.3)

where we have introduced the constant x, which we will get by requiring the correct
Newtonian limit. This will be done in the next part.

2.8.3. Weak field limit

Weak field limit (w.f. limit) is what we have called Newtonian limit in the past. In GR
we can identify this weak field limit by perturbing the flat Minkowksi metric with a
small parameter h,, with |h,,[1. We only look at the first order and get:

G = M + Py + (higher orders)

Then the key to working out the correct equations characterizing the weak field metric,
we need to take a close look at the form of h,, and derive its properties:

16The notation taking the covariant derivative with respect to u is more common but of course this is
the same since the Ricci tensor and the metric are both symmetric.

I7A constant is the only possibility in this case, since a dependence on coordinates would give us
additional derivatives. The importance of A will become clear later in the course
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2.8.3. Weak field limit

e i, isnot a (g)—Lorentz tensor. We see that from the fact, that h,, is a proper
metric minus the Minkowski metric, so if we look at a coordinate transformation
% 7Y

~ _ __ Aa AB _ A AB a AB

so we see that we have two possibilities:

— If A% is the Lorentz transformation of SR, then A“,A” glap = Nsp Which
means, that we can write

~ A AB __Aa AB a AB
Jap = NGA 59aB = A% A o +AGA ghaﬂ
—_——
:77&6

which means, that

L AX_AB

e

has =

Wee see, that in this case h,p in fact transforms like a proper (g) Lorentz
vector.

- A = g% is a general coordinate transformation. Then
A A s 7 0a
so we generally get:
hd@ = Aa&Aﬁﬁ*naﬁ + AadAﬁéhaﬁ — 77&3

which is not a LT of a (g)—tensor

e Inverse metric of the w.f. limit:
We can just simply raise the index of h,s with the Minkowski metric (in O(h)).
So we can construct g"”, so that g"*g,, = 6% with (proof in ex. 7, task 2)

g =n"" — " with hM = n““n”ﬁhag

so N is just simply the index raising tensor of hup.

This is actually not a surprising result, since n®# must be the index raising tensor of
any perturbation, since if we take ¢*° as index raising tensor we would immediately
get:

go‘ﬁhg,, = no‘ﬁhg,, + O(hz)

e Trace of h:
We see, that we can generally find the trace of a tensor of rank 2:

T’“‘V — g“BTgV =g, 5T“’3
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2.8.3. Weak field limit

Which means, that we can contract p with v and we get
T= T’uu = TMM = gMVT,uV = gp,l/Tl“/
This means, that the trace of h is given by

h = h“u = g"hy = guht"”

~ 0" hy, =N at order 1in h

We have to note though, that since h*” is not a true (3) Lorentz-tensor, h is not
a Lorentz-scalar!

Trace reverse tensor of h:
We define the trace reverse tensor as

- 1
hag = haﬂ - §na6h (2831)
This is also not a (g) Lorentz tensor. B
Why do we call it trace reverse tensor? We see, that h = —h:
7 af 1 1 af
h =0 hag — =Naph | =h — = (N Nap) h = —h (2.8.3.2)
2 2 —
=Tr(14)=4

This looks familiar to the Einstein tensor from eq. (2.8.2.2). This is not a coin-
cidence. In fact G,z is the trace-reverse tensor of the Ricci tensor.

Riemann-tensor in the weak field limit
We know from eq. (2.7.1.1), that we can represent the Riemann tensor in terms
of the Christoffel symbols:

Ragyw = oy (Uhy = Tl + 13,1705 = T3,1705)

But we know, that for h,z = 0 the Christoffel symbol needs to vanish, so the lowest
non vanishing order of I'j,, needs to be linear in h:

5, =0+0(0)+ ...

This means, that we can neglect all terms, which are quadratic in I' and by using
eq. (2.5.5.2) we finally get

1
Ropu = 92 (Gowpp + 9Bpor — Jop,pr — 9pvap) (Mapuw = 0)

5 (haljvﬁﬂ + hﬁ/”ﬂal/ o ha.u‘nBV - hﬂy»aﬂ)

THEORY OF RELATIVITY AND COSMOLOGY 59



2.8.3. Weak field limit

e Einstein tensor in weak field limit
It turns out, that if we want to express G,s in this metric it is easier to express it
in terms of h,p instead of h,pg (shown in ex. 7, task 1, optional task):

| —r v wy vy,
GO(B = —5 (T]'I h/aﬁ,lLV + naﬁnlr}/n h/p,l/,’yd - TII h/liyﬂl’ - T’H‘ h/ﬂ'u,7ay)

which we will shorten down using the more compact notation:

Then we get

1 _ _ —
Gap = —5 (h T Mgl ™ = hau,ﬁw a hﬁu,aM) (2.8.3.3)

9 \afp

Note, that we have kept the order of the derivatives here, in fact this is not
necessary since we are looking at a small perturbation and locally the index
raising tensor is just the Minkowski metric, which has a vanishing partial derivative:

(=" ) =0 )= D))=,

e Remarks on the differential operator (...) *
This operator in general has a non trivial solution, since

(... )W’“ =" (. ) =9"5—

But for a small perturbation g = n* + O(h?) since all non-vanishing derivatives
need to be at least O(h). With this we get

o 00 9

()t =g )+ O)
82

:(—@ﬂLA)( )=0(...)

with the Laplacian A and the d’Alembertian [ known from vector analysis.
Since [ is the usual differential operator in free wave equations, in flat spacetime
this means, that we get plane waves:

Of=0 = f=A-ék"

which gives us a condition for k,:
(ko — ki — k3 —k3)f =0
=kp=> kl=uw
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2.8.4. Gauge transformations

We have seen from deriving the properties of our weak field limit, that the Einstein
tensor generally does not take a very simple form.

Although this perturbed manifold has an absolute geometrical existence we can of course
describe it in any system of coordinates, so we can try to find a coordinate system
which fulfils ¢, = 1, + hy and which makes our calculations as easy as possible. We
call this a gauge transformation:

A gauge transformation is an infinitesimal change of coordinates, such that
a small h,, transforms into a small A,

Mathematically we can express this with an infinitesimal vector £¥(x#):

[e%

% {Z‘& — 56[1,& + fd(l‘a)

new coordinates old coordinates  difference “new—old” in each point

So we can write the transformation matrix and its inverse as

0z 5 a
e 0 +&%, (2.8.4.1)
ox® N N
8'5756 —_— 5& - 5 7& (2.8.4.2)

because in that case we get back the identity in linear order if we do a change back and
fourth:

074 0xP -
5~ (53 + éa,d)(‘sg - 5'8,&)

oz 0T%
= 3507 + 0267 — 0565 + O(¢?)
)

= o, +0(¢?

This means, that we can write the transformation gos — g5 as

gdﬁ = (05 — fa,d)(‘;g - 55’5)(%3 + hozﬁ)
=1lag = NapEa — Napt” 5+ hag + O(E2,€- h)

So by inserting B&B = 9ap — Nap We see that

hag = has — 5. — Ea (2.8.4.3)

Hence we have found the gauge transformation of a metric perturbation.
We can use this knowledge to eliminate degrees of freedom:

hy — 10 d.of.
£* — 4 d.of.

So we can eliminate four degrees of freedom with a gauge transformation.
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Lorenz gauge

Imagine an arbitrary coordinate system with a small h,,. We then compute IiLO‘”W and
impose!® a gauge transformation using a £, which obeys (similar to the Lorenz gauge
in electrodynamics)

Dga — é-oz,,u’u — hcw’l/

where the ** is a contravariant derivative. We then get a new 71“,,, G Where (this will

be shown in ex. 7, task 2)

which also implies, that

We can then use the d’Alembertian to write

1 =
Gap = —3° Ohep| in the Lorenz gauge (2.8.4.4)

Note: Since from now on we will work in the Lorentz-gauge we omit the in order to
simplify notations.

With this the Einstein equation in the weak field limit with the Lorenz gauge simplifies
to:

1 -
—§Dhaﬁ + Ag*? = kTP

2.8.5. The Newtonian limit of General Relativity

While for many problems in nature, the Newtonian theory of gravity gives a first order
description already in the 19th century there were some deviations in measurements due
to GR corrections. We will look at a few examples:

® The measured shift in the perihelion angle of
Mercury was observed to deviate 43" /century from
the predictions from Newtonian gravity even after con-
sidering the perturbations from other planets. This
deviation could be explained by Einstein.

18This does not follow trivially from the equation but was rather obtained from thinking a lot about
the structure of the Einstein equation.
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2.8.5. The Newtonian limit of General Relativity

Trajectory close to sun

® The gravitational lensing of the
sun leads to deviations between the
apparent and true position of stars

L/

Star Observer

when they pass close to the sun. Sun

® GPS uses high precision measurements of time differences in 2 , B
received light signals. Without correcting effects of GR these @
measurements give completely wrong results. »

%

How do we connect our weak field limit and the Newtonian limit mathematically?
We know, that in the Newtonian limit |h,, | is small (small curvature) and all v are small
(slow objects) v < 1. Then we can look at the components of the Einstein equation

1 -
—§Dh"‘5 = KT (2.8.5.1)

We see that

T% = rest energy density + kinetic energy density

-~
small
~ rest energy density

"2 n for identical particles

So T% is not necessarily small. In fact it is O(¢v°) in an expansion in v. In
contrast

o TU =T0=0(T"-v) =0(v)
o T =TI =QO(TY - v?) = O(v?)
So in v we have a hierarchy:
T > |T%| > |T"|

Note, that this is just the expansion in terms of v, but we still need to do the expansion
in terms of h,,,. We only keep the leading order terms in both expansions and since the
Einstein equation has the form (2.8.5.1) we need to have the same hierarchy in hA*!:

A% > DR > TR
N Y

19The step from the first relation to the second is in fact a bit subtle. Although we could in principle
add a constant term «, a first order term o, z* or a((z')? — (z%)?) and thus change the order, these
kind of functions are not allowed physically since h is a small perturbation, hence terms which
include x* are not allowed since they would diverge at z# — oo and a constant o would be so small,
that it would not matter.
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2.8.5. The Newtonian limit of General Relativity

Then we can explicitly write out
h=nuh" = —h% + A 4 B2 4 B3 = —p% 4 O(h"?)
but also

_ 1 8.3. 1 -
B — v 577;uxh (28:32) v 4 §nullh

so altogether we get

_ 1
h* = pH — 57]“”]1 (2.8.5.2)
This enables us to explicitly calculate the coefficients of A" in leading order:
e WO =p0 —L(-1h=—-h+ih+O(W*) ~—3Ih

e 1% = 1% = O(hv) < b
o W71 = hi#i = O(hv?) < h®
o h=n"—1h=0(?) —Lh~—1h

which means, that the only remaining terms are the diagonal terms and the metric
g*? = n* 4+ h*® in first order becomes:

—ih

h

>
O~ O O

0
0
0
1
2

O O O

1
2
_ 0
g - 77 0 )
0 —5h
and analogously the metric with the index lowered gives us

9op = Nap + hagp

with
—h 0 0 0
0 —-in 0 0
_ p _ 2 _
hotﬁ %M?ﬁuh 0 0 —%h 0 i
0 0 0 —%h
We can shorten down this notation in the line elements
1- 1-
ds® = (—1 — §h> (dz°)* + (1 - §h) ((dz")? + (dz®)* + (dz®)?) (2.8.5.3)

Which reduces the Einstein equation further to only include the 00-component and we
get

1 -
—§~Dh00:/€TOO & —-Uh=nrp
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2.8.5. The Newtonian limit of General Relativity

where p is the rest energy density.
We proceed by doing an approximation of [

2
o=- & 49 L9 P ALOWRA
o2 o Top Tan A TOWA)
~—
Z=0(wZ)

so we finally get for the Einstein equation:

Ah = 2kp

How do we get the connection between h and the usual gravitational potential ® known
from Newtonian dynamics, so that we can get a value for k7 We already know, that

h @
— = — 2.8.54
2k AnG (28.5.4)

since A¢ = 4wGp. So in order to draw the connection we need to prove, that —Vh gives
the acceleration (up to a normalization factor).
We look at the spacial part of the equation of geodesics (2.6.2.1)

dp* -
m—— 4T p*p’ =

and see, that

p* = (my, mv'y, mv*y, mv*y) = (m,0,0,0) + O(v)
which means, that in leading order we obtain

pi,o = _Féopopo = _mQFéo
but with the metric from (2.8.5.3) we get (shown in ex. 7, task 2):

i o—s9 (=
= o (4)]_

7

which means, that we finally have found the relation between h and the acceleration:

' 427t ) 2 1 -
m-p'y = m? d; =m? d = —mzﬁjhd = _ZLVh
accslseurziion
This means, that
h (2.8.5.4)
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2.8.5. The Newtonian limit of General Relativity

Remark on the relation between z° and t:
__ dp*

Why do we write % = =5~ in the geodesic equation, i.e. use the 2%-component as proper
time?

Normally we would have to take the proper time, since in the geodesic equation eq.
(2.6.1.2) the derivatives are taken with respect to proper time.

But if use the definition of the proper time

dt = /—datg,, da”

and use the weak field-metric we see, that
dt* = —da"(nu, +  hu  )dz”
~—~
(2822)7%56#”

But for slowly moving particles, we saw that dz = O(v d2°) < da, so
1- 1-
dt? ~ —(da")? (7]00 - §h> = (da?)? <1 + §h)
1.\ /2 1.
= dt ~ (1 + §h> dr® ~ <1 + Zh) dz? = (1 + ¢)dz”

This means, that the (small) difference between dt and dx® is a second order correc-
tion, which we call post-Newtonian corrections.
In particular we find
dp'  Op' dt
dz0 Ot dao

_ _Msi E*_: 72
o (1+4)hw O(h?)

Remark on units:
If we would not use natural units, we would find

G
af _ afB __ a3
G = ANg*” = ” T

and since in SI p = (mc?) - n we get p = p,,c® this altogether gives
A G
Ag = W—zpm < AnGpm
c

which indeed gives us the usual gravitational potential from Newtonian dynamics if we
define ¢c* = ¢yray. Indeed this gives the right units for the gradient:

A = 4 ,¢grav

-2 -1
ms m m2s—2

Another choice is to extend natural units to
c=G=1

by a proper choice of mass. Then we can use “meters”, “meters of time”, “meters of mass”
and in these units the Einstein equation further simplifies to

G + Ag*’ = 871"
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2.9. The Schwarzschild metric

In this section we will try to explicitly compute a solution of the Einstein equation in
the case of spherical symmetry.
We already know, that spherical coordinates imply

ds? = —dt* + dr? + r*(d6* + sin®(0)dy?)

where we have just used the metric of a 2-sphere and added the 2° =: ¢ coordinate.
We can then find the components of the metric by using the properties of spherical
symmetry:

e Each element belonging to a given 2-sphere with fixed radius should have identical
properties:

ds? = goo(dxo)2 + ngidxodxi + 911(d$1)2 + leidxldxi + f(r, 15)((dx2)2 + sinQ(O)(dx3)2)

with ¢« = 2,3. With a more convenient naming by using ¢,7,6, ¢ as coordinate-
names this becomes

ds® = g dt* + 2g,dtda’ + g dr? + 2g,.drda’ + f(r,t)(d6* + sin®(0)dp?)

e Since €, and é; need to be orthogonal to the 2-sphere (otherwise spherical symmetry
would be violated) and ey and €, are tangents to the 2-sphere we see, that

and analogously
Gro = Gro = Grp =0
which altogether leaves us with

ds? = gy (t, r)dt* + 294, (¢, 7)dtdr + g, (¢, 7)dr* + f(t,7)(d6 + sin®(0)dp?)

e We know, that the components of the metric cannot depend on 6 or ¢ since this
would also violate spherical symmetry.
e Finally we see, that if we define a transformation

r—r = (f(t,r)"?

and use our symmetry arguments (no component can depend on 6, ¢) the metric
in this system simplifies to?"

ds® = gudt® + goydtdr + gy dr® + 1 (d6° + sin®(0)dy?)

- i

=:d02

. . . . a ] o
20We can simply use this, since in our transformation Ju'v = % Jap gju all derivatives except g:, =1
vanish.
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2.8.5. The Newtonian limit of General Relativity

e To find the remaining components g, gr¢, grr We solve G&? = TP
We proceed analogously as in electrodynamics and look at different cases:
— Interior solution: 7" takes a general (1" € SO(3)) form, so g,, depends
on p(r) and p(r)
— Exterior solution in vacuum: The stress-energy-tensor vanishes (locally)

so G* = ( and with the assumption of asymptotic flatness Ros,, "800 we
get to the Schwarzschild solution.

e Schwarzschild solution: With static boundary conditions we get for the metric
(Herleitung?):

2M oM\ !
ds® = — (1——> de? + (1—-) dr? +r? dQ?

T T

In fact Birkhoff proved, that this solution is always true, even if we do not assume a
static distribution of mass. The only requirements, which remain are spherical sym-
metry, vacuum outside the star and asymptotic flatness of spacetime. Note, that
spherical symmetry is not only required for the mass distribution but also for the move-
ment of particles, i.e. a rotating mass distribution only has axial symmetry due to
angular momentum.

Comparison between Schwarzschild and Newtonian metric
From the first term of the metric we can immediately identify ¢ = —%, since the metric
of the Newtonian metric read

ds* = —(1+2¢)dt* + (1 — 2¢) ia/:i

spacial
3-vector

but if we do this in the Newtonian metric we get:
2M 2M
ds? = — (1 — —) dt? + (1 + —) (dr? + r2dQ?)
r r

We see two differences with respect to the Schwarzschild metric:

e g,y = (1+ 21) instead of (1 + 2M)~!

e (1+ 2M) s also a factor of r?dQ)?
So we see, that the two metrics are in fact different. But how do we recover the

Newtonian metric from the Schwarzschild metric?

We see, that we need to take the limit |¢| = |%| < 1,1.e. M small or r large. In that
case the Schwarzschild metric becomes

oM oM M?
ds* = — (1 - T) dt* + (1 +=-+0 (7» dr? + r2dQ?
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2.9.1. Conserved quantities

We then change variables r — 7 =1 — M (92 P = §k):

Oxh

2M 2M
2 o _ 2 =2 - 2 102
dsN1(1 7~+M>dt +(1+r+ )dr + (7 + M)“dQ

IM M\ ! oM M\ ! M2
=—<1——(1+—> )dt2+<1+—(1+—) )df2+f2(1+—> dQ?
T T T T T

oM oM
~— (1 - ) dt* + (1 + — ) (A7 + 72dQ?)
r

7

so we see, that the Schwarzschild solution returns the Newtonian metric with spherical
symmetry for || — 0.
In particular the Kepler orbital velocity is asymptotically the same at large r:

M
% JR—
o(r) = =
Furthermore we see, that the Schwarzschild metric has a singularity at » = 2M since

r—2M
Grr —2 OO

For more informations on this case see 2.10. For “normal” objects though, this singularity
is never reached, e.g. for the sun R ~ 10°km > M, ~ 1km

2.9.1. Conserved quantities

To derive the equations of motion for particles in the Schwarzschild solution we will
heavily rely on conserved quantities, so we will take some time to take a closer look at
the implications of spherical symmetry and a static metric on conservation laws.

General remarks on the connection between the metric and conservation laws
We remind ourselves of the geodesic equation from 2.6.1:
d2xt , dx® dzf
_I_ - =
dA2 B AN dA

Furthermore we have seen, that for a massive particle we can chose A = t so % = %
and
m—p = Tl p"p
dt P
and analogously we can chose A for a photon so that Fgs = hig,s = —p - ﬁobs =
—dd%\ 9apU, fbs, which is exactly the definition for the energy from 1.6.5 which is equivalent

to the condition, that an observer at rest in a LPIF measures hv = ‘ii—“f\o. So we get

d
o = T
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2.9.1. Conserved quantities

In both cases we can lower the index (as shown in ex. 6, task 3) and get:

. dpg
massive: m—- 1
dt o v
= 59uw,8P" P
hoton: % 2
p S

so we immediately see, that symmetries of the metric imply conserved quantities:

if =0 VYu,v = pg=const|along all geodesics

Conserved quantities in the Schwarzschild metric
In case of the Schwarzschild metric we have three conserved quantities, which follow
from the conditions static (1) and spherical symmetry (2):

1. Spherical symmetry:
To see the consequences of spherical symmetry it is easier to rotate the frame
(without loss of generality), so that the geodesic of a given particle is along the
equatorial plane, i.e. 0 = 7. Then x#(\) = (t(A),7()),0,¢0(A)). Then the two
conservation laws follow from

do
F 0 = Po = 0
Vu,v gue=0 = p,=const along all geodesics

the second condition is equivalent to the conservation of angular momentum,
which we know from Newtonian mechanics.

2. Static metric:

Vu, v guwo=0 = po=const along all geodesics

General remarks on the connection between FE, p° and py:
In general £ # —p° # —py, as these are in principle very different values:

o = Fu = —p- ﬁobs depends both on the observer and the frame where the
measurement is performed

e p’ = O-component of the “true” 4-momentum p* in a given frame. It increases

(decreases) when the particle is accelerated (decelerated).

e g is “something” which encodes information on the particle and the gravitational
environment, since py = goup*. From above we know that this term is constant if
the metric is static.

We can also use a simple example to show, that they are in fact different:
Let Ugps = (v°,0,0,0) with Usps - Uops = (v°)%gop = —1, 50 0° = (—goo) ™1/

Eobs = =7 Uobs = —1",0(—900) ™2 = po(—g00) /% = = (0" 900 + D' gi0) (—goo) '

In particular we see, that the three quantities are only equal in a LPIF, since there
goo = 1 and go; = 0.
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2.9.2. Evolution of one massive particle

2.9.2. Evolution of one massive particle

s

Again we set § = 7, so that the particle only moves in the equatorial plane. We can
then use our knowledge about conserved quantities to write down py, ps, pg:

Py = const = —Km
pg = const =0
D, = const = Lm

with the constants K and L, which we will need to determine from the equation of
geodesics. We can then write the contravariant 4-momentum by using the Schwarzschild
metric and get:

P =9"p, =¢"po=(1-2)"mK

T

p" :m% as usual

P’ =0

@ — Ve — g0y — _mL _ _ mL
p = g%y = §%%p, = oy =

Normally we would now use the geodesic equation to solve the equation of motion for
each component but since we already have three integrals solved (0,6, ), so we can
directly find the equation for r by just using:

7 p=-m> < p’g00p’ + P gl + PP Gppg? = —m°

so we directly obtain the differential equation:

oM\ ' - oM\ ' fdr\? m2L
—m? (1 - " K+m?(1-"— = +m = —m?
r r dr 72

so after simplifying the remaining terms are

(%)2 _ (1 _ ¥) (1 + f-j) (2.9.2.1)

and together with

d

we have characterized the motion of our particle completely. Unluckily this is not a
trivial differential equation, so we will not try to derive solutions but rather look at
different cases for K,L and M:
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2.9.2. Evolution of one massive particle

We notice, that the left hand side of (2.9.2.1) is always positive, which means, that

Vir) = (1—%) <1+g> < K?

) | s S

— L>12M?
— L<i12M?

!
!
|
i
|
!
|
|
|
|
!
|
|
|
|
|
|
|
|
!
|
|
|
|
|

|
|
—+
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T

2M Tmax Tmin

Furthermore we can extract some information from the shape of V (r). The asymptote
of this function is 1 for every value of M and L and we see the singularity at r = 2.
Furthermore we see from calculating the extrema of V (r) (for full calculation see B.1),
that there are two cases:

e [? < 12M?: V(r) is monotonic. We then have the following possibilities for the
geodesics:

— A particle arriving from 7 — oo requires &K > 1 and just falls onto the star
at some radius Ry, > 2M

— A particle, which is ejected by the star can go to oo if K > 1 or “hit the curve
V(r)” and fall back if K <1
e [? > 12M?: V(r) has a local maximum and a local minimum, which we will call
Vinax and V. The possibilities for the geodesics are:
— A particle arriving from r — oo requires K > 1 and it
% falls on the star if K > f/max

* “hits the curve V(T)” and goes back to oo if K < Vi similar to the
hyperbolic orbits in Newtonian gravitation (it is not an exact hyperbola
though)

— A particle, which is ejected by the star can
* gotoooif.f(>f/max>1
% fall back if 1 < K < Viyay
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2.9.3. Calculation of perihelion shift

again similar to Newtonian gravity

— Finally particles can be trapped in a close orbit if f/min < K < 1 with the

special case of a circular orbit if K = Viy,. Otherwise we get a nearly elliptic
trajectory. This solution is not an exact ellipse though:
If one solves r(7) for this case one finds, that r(7) is periodic but ¢(r) is
monotonic with different periodicity than the radius, which means that a
fixed point, i.e. the point where r is minimal in each rotation, called the
perihelion rotates by some angle d¢

2.9.3. Calculation of perihelion shift

To calculate the precession angle of a planet (in this case mercury) we need to do two
steps:
First we need to integrate

dr - ~
<= VEG? =V

to find the period A7 between two minima of 7.
We furthermore know, that

d_gp _ p‘P _ g@@p(p

T\al t~:

so we need to compute

unluckily we again have no easy analytic solution but an expansion in % gives us the
leading post-Newtonian correction for a mearly circular orbit. The proof for why this
gives this limit can be done in two ways:

1. We know that in the weak field limit % < 1 but for a bound orbit r also stays in
the order of rp, (see (B.1.0.1)):

~ -1
L? 12M7?
min = 55 | 1 I——
r 50 ( + 72 )

-1
M M 2M? 12M2 !
144/1—

SO

~Y =

r(T)  Tmin

which is only fulfilled for 2 < 1
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2.9.4. Evolution of a photon

2. Use the newtonian limit where the angular momentum is just L = mrv. Then for

a circular orbit
M
v = 7, |'U| <1

In GR we know, that

SO

e

~ M? M3 M? M
L=r =
’

This means, that if we again take the weak field limit % < 1 we also get ]\g—; <1

M 21

p .

Using this approximation we can calculate the perihelion shift in leading order in

M? M* M M?
A30:27T+67r~—+0(~—>:27r+67r—+(9< )
L? LA T

r2

In the special (historical) case of mercury if we plug in M = Mg and mercury’s orbiting
radius R ~ 0.4 AU we get

Ap — 21~ 5-10 "rad

and after computing the number of orbits per century, one finds a perihelion shift of 43"
per century, which is exactly what astronomers had found in 1882 and which had no
physical explanation so far.

2.9.4. Evolution of a photon

In the case of a photon we do analogous considerations to a massive particle. The
equations

po = const = — K
po =0
Py, = const = L

still holds, so we get

p"=g%po=(1-2)"K

P dr
D =ax

2'We will skip the explicit calculation here, since it is quite lengthy.
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2.9.4. Evolution of a photon

Again we can take the shortcut not by using p- p = 0 instead of solving the geodesic
equation:

0= p"g00p° + 0" GreD” + P Gpop®

ar\* 2M\ L?

so we can define V?(r) analogously to above:

— A photon (or any other massless particle) arriving from r — oo
* Falls on the star if K > Vi, i.e. if L < /27K M?
* “hits curve V(r)” and goes back to r — oo if K < Vjax. This deflection of
light is called gravitational lensing (see 2.8.5).
— A photon which is ejected from the star
* goes to 0o if K > V.
* Falls back in the (very rare) case 2M < Ry <1 < 3M?

We furthermore see, that there is no closed orbit for light rays®*.

22Later we will see, that % is the tmpact parameter d, so we can rephrase this condition to d < v27M
23While this is a very strong constraint neutron stars fulfil this condition.
24y = 3M would be a closed orbit but it is unstable.
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2.9.5. Deflection of light

2.9.5. Deflection of light

We now want to explicitly calculate the deflection angle for gravitational lensing. We
know (rename K — F)

dr oM\ L2 dp L
R 5 S Wl [
dA \/ ( 7’)7’2 dx 2

(B -0-2]

We notice that when r — oo (only approximating the term in the square root):

SO

d 1
Py

dr 72

.o d 1L
lim &F =+~
r—oo dr r? E
I d Tmin | deflection angle Ay < 0
Pout — Pin = A“rj - M
I
@
55
<8 / @
[

Furthermore we know, that when the photon

veg: d¢ dr de
e arrives: = < 0,55 <0=3>0
dr

. do de
o leaves: (¥ <0,55>0= £ <0

So we can associate the signs for i—‘f to the incoming and outgoing photon:

y o0 = Y, 1L

{t dr r2 FE
dy _1L

l—=+4+00 = T = —=F

We can now use a geometrical reasoning at ¢ = #-co to show, that (£) = d:

Ty

Id ¢ +de

1
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2.9.5. Deflection of light

In the small angle approximation we get

d
d=r(r—p) = o=
d
d=(r+dr)(r—(p+dy¢)) = W—gp—dgpzr_i_dT

So altogether we get
d d d 1 taylord dr d-dr

dp = — =-(1- X (1-14+4—) =
L. r+dr 7‘( 1+%> r( +7"> r2

L L
dy _ d 4

SO

dr 12 r2K = K

We can then calculate the change in angle ¢, — @i, by integrating:

Pout Tmin d +o0 d
Pout — Pin = / ng - / _SO dr + / d_gp dr
Pi +o0 Runin r

dr
>0 <0
teo 1 oM\ V2
Tmin r2 r2 r
=Ap—m

Again we can take the weak field limit |Agp| < 1 which requires 7, ~ d which can be
rewritten to

M M

Tmin
in this limit we find (not derived here) Herleitung?

M M?

Remark: Before GR there were already attempts to incorporate the deflection of light
in Newton’s theory but there already some problems occured:

e If one assumes a photon to be a massive particle at speed ¢ and takes the limit

m%OoneﬁndsA@N%

e If one assumes the photon to be massless from the beginning the deflection is
Ap =0

The gravitational deflection of light was first observed by A. Eddington during a total
solar eclipse in 1919. He measured the difference in angle when stars passed by the sun
and the result corresponded to the predicted difference of Ap = 4]\};[—5 = 1.74"

While this effect is very small in case of the sun, there are spectacular clusters and
galaxies, which cause strong lensing so one gets arclets, multiple images etc.
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2.10.1. The Schwarzschild metric at r — 2M

2.10. Black holes

The prediction, that objects can exist from which light cannot escape is not really new.
In Newtonian mechanics if one assumes the speed of light to be finite and and uses the
classical escape velocity

,  2GM
N T

(Y

we see, that no light can escape if

2GM
>cC

r

which in geometrized units simplifies to

with the mass M and radius r of the object?.
This was already postulated in the 18th century, since it was already known by then
that the speed of light is finite. Since we can also express M and r by the density

3M

4qrp3

p

so we can express the limit in terms of M, r and p (where we need two of the above). In
particular this does not impose a limit on p. For example:

o If p = pyater We get a black hole if M > 10% - M,
e If R = R, we get a black hole if p > 10° - pg,
e if M = M, we get a black hole if p > 1018 - pg

2.10.1. The Schwarzschild metric at r — 2M

We look at the limit » — 2M and look at the behaviour of the metric g, — co. Consider
a radial infall:

d -
d_go =0, L=0 (we consider a massive particle)
,

We look at the coordinate- and proper time:

1. We already know that

d 8 oM\ ?
d_r = — (K2 -1+ —) where 7 = proper time
T T

2By coincidence this is also the solution we get in GR.

THEORY OF RELATIVITY AND COSMOLOGY 78



2.10.2. Kruskal-Szekeres coordinates

Then the time to go from some (fixed) riy; > 2M to r = 2M is

2M oM
d
Ar = / dr — / !
Tini Tini \/m

which gives a finite, well defined result.

2. The 4-velocity of the object is U = (4t 48 0,0) so

dt . oM\ ' -
— =U"= ¢, —gopo:—gooK:(l——) K

dr r

The problem that arises from this is, that for » — 2M:
2M 2M %
dt d Kd r
At:/ (—) <—T> dr:/ — L 2B 50
Tini dr dr Tini (1 — w) f( — 1+ 2M

So we see, that the physical proper time is finite, just the coordinate time diverges.
This implies, that nothing is singular, just our choice of coordinates is inappropriate
for studying black holes.

2.10.2. Kruskal-Szekeres coordinates

The first alternative choice of coordinates, which circumvents this problem was presented
in 1960 by M. Kruskal and G. Szekeres and thus has the name Kruskal-Szekeres
coordinates (KS-coordinates). We start from the Schwarzschild metric and redefine
the coordinates ¢, r t0?

r> oM : R= /57— 164MCOSh(4%M)
T= /53— 1€4MSlIlh(m)
<90 - R= 1—ﬁe{usinh(@)
T = /1 — 53; e cosh (m)

with T' > —R. We see, that in these equations we still have the divergences for r — 2M
but the singularities here are not physical since they compensate the divergences in
the Schwarzschild solution.

In fact we can rewrite these coordinates such that at the Schwarzschild radius 7" and R
simply switch:

r t
R = ’——1 e cosh (—) =T
outside:R > 2M 2M 4?/[ inside:R < 2M
r
= m —1 €4M sinh (m) =R

26We will leave out the explicit proof here since it is quite lengthy.
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2.10.2. Kruskal-Szekeres coordinates

With this transformation we can rewrite the line element to

3
ds? = o2M )efh’f)(_dT? +AR?) + (T, R)AQ? (2.10.2.1)

which has no singularities. Additionally in the case of photons with radial trajectories
we get dR = +d7T' like in the Minkowski metric.

Remarks

e There is still a singularity at r — 0 because we assume all mass to be concentrated
in one single point (this is of course not realistic)

e KS coordinates are better for studying black holes but Schwarzschild coordinates in
practice are often still better for other problems because of the obvious Newtonian
limit, the limit ¢ — 7 for r — o0, obvious asymptotic flatness and the generally
simpler form of equations.

e (T, R) is defined in a non-trivial region only. To find this region we look at the
behaviour of 7" and R. We find:

T t
E = tanh <m> R >2M
T t\
E = tanh (m) R <2M
and
R -T2 = ’ﬁ — 1‘ e (2.10.2.2)

which means, that ¢ = const < L = const and r = const <> R? — T? = const.
This means, that we can plot 7" and R:
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2.10.2. Kruskal-Szekeres coordinates

o N
N 4

AN T t=0_

N 1 D

(excluded) 4 AN (Schwarzschild R

’ \  quadrant)
' 7 N
’
(

N
N Ao
‘ 7 A X
I N \]
N

excluded) N A

Figure 2.1.: KS coordinates with 2M = rschwarsscnila = 1 (taken from Wikipedia)

We see, that quadrant I is the exterior region of the Black hole and II the interior
region, whereas the boundary between ezterior and interior is the Schwarzschild
radius.

We exclude quadrants III and IV since they give the same results as [ and II just
with negative ¢t and r and this is unphysical. There are theories though, which
also consider these parts and call quadrant III the parallel exterior region and IV
a white hole.

e We know, that for massive/massless particles we always have ds?> < 0, which

means, that
I 2>1+ r eriz [ 4 2 I U
R) — 32M3 dR dR| —

or more precisely:

dT
‘ﬁ =1 for radial photons
> 1 for non-radial photons and massive particles

This means, that we can draw radial photons as 45° lines in our diagram:
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2.10.2. Kruskal-Szekeres coordinates

T 'y

L

Other particle 27

(massive or non-radial phaton)
.

/)' v\

Radial photon>

going towards Radial photon
BH,/ going opposite

nd to BH
2N
~A5°\
. \

We immediately conclude from this, that nothing can cross the divide from
r<2M (T > R) tor >2M (T < R):

7
’

N

A TA Can only be crossed ,
N from outside to insidé  ,~

.
AN s 4
77

&
7 v 1'0 Z
NS e/

N /QQ

Furthermore we see, that any geodesic with a least one event in the region r < 2M
will necessarily end up on the Black hole at » — 0, so the sphere with r = 2M is
the Horizon of the Schwarzschild BH?".

Remarks:

e We only discussed the Schwarzschild BH, which is spherically symmetric, static
and with constant R. This is not a realistic assumption since a general BH is
rotating and thus only has axial symmetry (Kerr BH), more complicated in the
sense that it is asymmetric, dynamical, accreting mass etc.

e The Notion of a BH horizon is loosely defined:
For a dynamical BH we would need to consider the entire spacetime until t — oo,

2"Horizon in this sense means, that we cannot see past this point similar to the horizon on earth.
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2.10.3. Observing Black holes

since only actually calculating the geodesic will show us whether a particle can
escape the BH or not.

e In any case the horizon has no special physical property. It is like any other place
around a BH%.

e Mathematically the KS coordinates do a very peculiar thing to achieve their special
properties. They are time dependent! We can see this if we look at any point
with fixed r (e.g. the Schwarzschild horizon r = 2M) where we can use (2.10.2.2)

R? — T? = const (R* — T? = 0 in the Schwarzschild case)

so as T increases R has to increase as well. Hence the radial coordinate R is
moving outwards with increasing time 7". This expansion happens slower than
c outside, and faster than c inside the Schwarzschild horizon.

2.10.3. Observing Black holes

Since Black holes do not emit any radiation®” we can only observe BH indirectly:

e Stellar mass BH: 1 — 10 M
We know that these BH are formed out of stars when a star becomes a white
dwarf (delocalised electrons), which then becomes a neutron star (only neutrons)
and finally collapses into a black hole.

Slnce the BH IS anlSIble When ISOlated we OIlly Right Ascension difference from 17h 45m 40.045s

+0.5" +0.4" +0.3" +0.2" +0.1" 0.0" -0.1" -0.2"
see them when another object orbits them (binary 513 1
systems, e.g. pulsar and BH). 04
+0.3"
e Supermassive BH: ~ 105 M, S
These are found near the center of almost every ©* 814

+
o

galaxy. They are detected through the motion of
mass.

o
Q

o

e Intermediate BH: 10 — 10° M,
These were only found in 2015 with observation

Declination difference from -29° 0" 27.9"

\\ )

of graviational waves, which found BH merging S13
Wlth masses M ~ 10 - 70 M@ There IS no aStl"O- o Orb\’tsof(sg;nde:‘gogiﬁssoflmgasr?éa’z;glsutﬁgO
physical explanation for them yet. 05 e seme see orompaten

28Unlike in most science-fiction where weird stuff happens at the Schwarzschild radius. We will explicitly
calculate this in ex. 10, task 1
29This is not entirely correct. There is a postulated radiation, the Hawking radiation.
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2.10.4. Gravitational lensing around black holes

Masses in the Stellar Graveyard

in Solar Masses

LIGO-Virgo Black Holes o o

» @ o @ 0%
(+) o (+]
o o
10 OOO OOO
0,200 o o 0°
5 © o o0 ©
] L]

Known Neutron Stars >
.

. . .
* LIGO-Virgo Neutron Stars

2.10.4. Gravitational lensing around black holes

We want to understand the lensing patterns that would be visible, if we were looking
directly at a black hole. While no telescope has yet taken any direct images of the
lensing pattern of a black hole, we can simulate it by just calculating the geodesics of
photons around it. Such a simulation is shown in the figure below.

We have drawn in two distinctive angles ¢, and 6, whereas
e below 6y: completely black region
e around f,: A fuzzy ring
e around #;: Another fuzzy ring

e otherwise we see more or less distorted images of the stars/clouds surrounding the
BH.
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2.11.1. Gravitational waves in nearly flat spacetime

The interpretation of this pattern is, that 6; and 6y correspond to the geodesics shown
in the image below.

More turns are also possible but 0y ~ 63 ~ 6,.... This means, that We have three
regions:

e O > 0;: Image of the full sky in all directions (even behind the observer)
e 0y < 0 < 6;: Second image of the sky, but inverted (like a mirror)

e 0 < 65: No possible geodesics/all geodesics end in the BH. So the black circle is an
“image” of the sphere with radius 3M! (not the Schwarzschild radius at 2M)

2.11. Gravitational waves

We have not yet looked at the question whether for a given T}, , g, is unique. It turns
out, that from the Einstein equation

Guwlguw] = 81T,

the answer is no. The solutions differ through gravitational waves (GWs), which are
solutions to the equation

G =0
with a small amplitude (dg,, < 1).

2.11.1. Gravitational waves in nearly flat spacetime

We will first look at the concept of gravitational waves in the weak field limit:

1
—§Dh’“’ = 8rTH
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2.11.1. Gravitational waves in nearly flat spacetime

which has the advantage, that this limit turns our second order DEQ into a first order
one. We will furthermore look at GWs propagating in a Minkowski background:

Guv = Nuw + h,uz/

and with [ = 9,n""0, gravitational waves are just the solutions of

(2.11.1.1)

Notej In contrast to the newtonian limit from 2.8.5 where we take the weak field limit
with h% > h% > h% here we only take the weak field limit, so

00 R0 o, i
The solution to our differential equation are then plane waves:
W = Re [AM "] (2.11.1.2)

with the /-wave covector k and the complex tensor A" which also contains the phase
information.

We look at some properties of waves, that we already from electrodynamics:
’QZ) _ Aei(—wt+k~:c)

with the frequency w and the 3 wavevector k.
This gives the dispersion relation:

R
o) =" = k) =eblK]

and if v is independent of £ then
w(k) = vlk| =v(k - k)'/?
For gravitational waves this becomes

Ohy = 1% 040sh, = 0
= 7" (ika) (iks) hp = 0

and from this directly follows
k:ano‘ﬁ ks = 0 = ko k® = null vector

which implies, that £ must be tangent to the worldline of photons (see 1.6.7).
In turn this implies, that

kanaﬁkﬂ — —(k0)2 + (kl)Q + (k2)2 + (k3)2 -0 = w2 — ’k‘2
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2.11.1. Gravitational waves in nearly flat spacetime

which means, that all gravitational waves propagate at the speed of light.

Note, that to obtain

1 -
—§Dh°‘5 = 87rGT?

and
Oh? =0
for gravitational waves, we worked in the Lorenz gauge which restricts A%? since
=0 = (ikg)A*expl...] =0
Thus
As =0
which means, that A’ must be orthogonal to k”.

As we can see though, the Lorenz gauge is not unique:
We constructed it using £* such that

a __ 108
L™ = n™" 4
but since we can always add a £* with éa = £ 4 (“ which fulfils
(* = B%exp(ik,2"), k,k" =0 (We omitted the Re(...))

o 0 :
= L = Uaﬁ%wéﬂ = k,k"B* exp(ik,2") =0

we have this degree of freedom to impose an additional restriction. But what is the

most convenient way to chose it?
This leads us to the following theorem (will be proven in ex.11, task 1):

If we take the same k* for the GW and for £%, we can always choose B* in
such a way, that

A, =0 and A,U” =0 for any fixed U”
—— ——
Tr(A28)=0 AeBLUB

Additionally the condition from the beginning still holds:
Ausk? =0

So this type of gauge is a special type of Lorenz gauge. We get the sim-
plest equations by chosing U = (1,0, 0,0), which then is called the traceless
transverse (TT) gauge. Most calculations with GW are done in this gauge.
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In the TT gauge it is easy to compute A,5. For a GW going in z3-direction (lg =
(w,0,0,w)) we get for example:

0 O 0 0

A 0 Ay Ap 0
P10 A —An 0
0 O 0 0

We get this result if we use our three conditions:

AagUP =0 Aupdl) =0 Ay =0
Apsk” =0 <= Apk® =0 <= wA,3 =0

A%, =0& Ua’BAaﬁ =0« Ay +nPAn & Ap = —An

This means, that we have 2 independent modes.

Remarks:

e If we chose a different k we get different non-zero components and if we chose a
different U we also get non-zero component in the time part but still the number

of independent modes remains as two*".

e Here we are studying GWs propagating in the Minkowski background (flat space+vacuum
everywhere). Of course this does not have to be always the case. Generally the
metric is of the form

G = g,u,l/ + h/uz
~—
GWs

where g, is any background metric describing a physical problem. The solution
for h,, are then not simply plane waves but take up a more complicated form.

Nevertheless they still have the same two independent degrees of freedom

for every k*, i.e. for every frequency w and direction (é)

e In the T'T gauge since
A%, =0 = h=-h=h",=0
We can easily see that h®® and h*® are the same
}os _ poB _ %naﬂ =i
=0
which means, that the GW solution directly gives the full perturbed metric:

ikax®

Guv = N + A;we

30This number of independent modes will be important in 2.11.5
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2.11.2. Effect of gravitational waves on test particles

Intuitively we would expect that if gravitational waves are measurable they need to
exert some kind of force (since we can only measure effects if they induce some kind
of interaction which is only possible through forces). To check this we Work in the TT
gauge and place a massive particle which is initially at rest at ¢t = ¢y, so < = 0. We
can compute the motion of the particle with the equation of geodesics:

d?z>  _ datda”

e Mt dt

Since we are in almost flat spacetime 2° = t =proper time and the initial 4-velocity is
U= i—f = (1,0,0,0) which means, that

A%z~ N
T = -Tg -1-1
with
1
"% —29 (9,6’0,0 + 90g,0 — 900,3)
1 Oéﬁ
=357 Shﬁ0,0 + hog,o — hOO,BZ
vanish in thve TT gauge
=0
So we get
d?z”
=0
di?

t=to

which means, that the test particle feels no acceleration and remains at rest forever.
The conclusion is, that GW generate no apparent force on particles. Their effect (if it
exists) must be truly different from any possible effect from Newtonian gravity or known
waves (such as EM-waves, mechanical waves, ... ).

To actually see the effect of GW we need to take two particles M and N, which we
place at the locations

M = (¢,0,0,0) N = (t,e', &% &%)

where we assume € to be small for simplicity.
Like before we assume,that the GWS propagate along the es-direction but this time we
compute the distance between M and N:

ds®> = dat'g,,dz”  with da# = N-—M= (0,e',e%, &%)

= da'(mpy)da?  + da'h;jda?
—_——— —_——
=(1)2H(ER)2H(E)2=LE (1) A1 +(2)2 Aga+ 2612 Agg e
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2.11.2. Effect of gravitational waves on test particles

where L is the distance in Minkowski spacetime. If we assume a GW in z3-direction,
ie. k" = (w,0,0,w) and ikta" = —iw(z® — 23) we get

0

, 1/2
proper distance = ds = <L2 + [An((eY)? — (6%)?) + 24 56t e ”33)>

which we can expand to

e fren( o emen(GE) - C )

&

Physical interpretation
We consider the two possible modes Ay; # 0, Ajo = 0 and Ay # 0, Aj; = 0:

o A #0, A5 =0: We assume, that Ay is real and positive. In this case when
= =1 e, —w@®—2)=2rN Nez
ds simplifies to
ds = (L2 + Au((e")? = (£2)%)?

so for any €' we can say that distances increase along x!, decrease along x? and
remain invariant along .
Analogously when we look half a period later such that

0

e W) = 1 je. —w@—2)=@N+1)r NeZ
Distances decrease along x! and increase along 2
o Ajs #0,A;; =0: Again we assume, that A5 is real and positive. Then for
—w(@® —2*)=27N NeZ

. . 1.2 1_..2 . .
distances increase along x\g and decrease along = \/51 , S0 the axis of motion

is rotated by 45°.
Analogously for

—w(2® —2°) = 2N + )7
we get the opposite.

We can visualize this effect if we take the scenario above and imagine particles forming
a perfect circle along the 2!, 22 plane, which is centered on the origin.
Such a circle can be described by the vector

which fulfils
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(81)2 + (62)2 — L2

2% = const (in our case we choose ° = 0)

x3=0
Although these particles keep the same coordinates when .
the GW passes by, their physical distances change.

Hence we need to look at the physical distance, where
we compute the ratio of the two axes of our ellipse. For
the maximum elongation (wt = 27 N) we get the ratio

large axis (L2 + ApL»)Y?2 T+ Al

small axis N (l2 — A11)1/2 N vV 1-— All
1 1
~ 1+ 51411 + 51411 +O(43) =14 A + O(47)

(the result for Ajs is the same). Hence we get two modes which are rotated by 45°, in
phase and have the same amplitude.

A;1 > 0,41, =0 A4, =04, >0
physical distance physical distance
in x2 direction in x2 direction

physical distance
% in x! direction

physical distance
/.~in x* direction

—wt = 21N s —gt = (2N + 1)1

The modes are often referred as +-Mode for Ay, # 0
and X-Mode for A5 # 0.

Comment: All this looks familiar to the study of the polarization of light. So we can
call the two modes the two degrees of polarization of GWs3!.

2.11.3. Detection of Gravitational waves

There are two major methods of detecting gravitational waves of which only one has
worked so far.

31But unlike EM-waves, which are oscillations of fields GW are the polarized oscillations of spacetime.
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Resonant bars: Imagine a massive cylinder out of metal (or another crystal).

Without EM interactions each atom of the solid would
remain at fixed coordinates when a GW passes by but EM
interactions want to keep the atoms at a fixed physical
distance. This effect is very small but if the GW are ori-
ented correctly w.r.t the bar and if their frequency coincides
with the proper oscillation frequency of the (slightly elastic)
solid then the oscillations of the bar’s physical size is ampli-
fied by the resonance, which in principle could be detected.
Unluckily the effect is so small that no current experiment
has achieved sufficient sensitivity to have measured any

GW. Massive cylinder made of metal

Interferometers: GW interferometers are in principle just

large Michelson-Morley interferometers which measure the difference in length of two
arms. The advantage of this principle is, that differences in length are a lot easier to
measure than absolute lengths. Nevertheless the difference Ad, that a GW causes in a
detector of 4km length is ~ 102! m (see ex. 10, task 2) so a lot of technical challenges
have to be overcome. Several experiments of this type are in operation or in the design
phase:

e LIGO, VIRGO: d ~ 3 — 4km, sensitive to h,, ~ 1072, has detected 10 events in
2015 — 2018 which resulted in the Nobel prize in 2017 (Weiss, Barish & Thorne).
We will do some calculations regarding the sensitivity of these detectors in ex. 11
task 2.

e Space projects: Have the advantage, that longer distances can be covered by the
arms and that no geological noise (which is very hard to filter out) can disturb the
measurements. LISA pathfinder tested technology for space based interferometers
until 2017. LISA is a planned space based interferometer which will use this
technology and which is set to launch in 2034 with an arm length of ~ 5 - 10°km.

e Several GW interferometers on earth have been proposed so far, the largest project
of this kind in the planning phase is the underground FEinstein telescope, which is
set to be in a triangular shape (to allow for two independent interferometers, one for
low- and one for high frequencies). Three locations in Europe have been proposed
for the telescope, one of which is just a few kilometres from Aachen at the border
between the Netherlands and Belgium!
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* mirror 1

No GW = dy=d, =d

A e1e . . .
dy M stabilization of mirrors
is the biggest issue
detector measuring d; — d, mirror 2

d I

Indirect detection: Some astrophysical systems like binary pulsars emit GWs. Hence
they lose energy, slowing the system down by a tiny amount over time. This can be
detected through through pulsar’s beams. Several of these binary pulsars have been
observed and the results match the theoretical prediction of a slow down due to GWs
very well. Hulse & Taylor were awarded the Nobel prize for this indirect confirmation
of the existence of GW in 1993.

The effect is called pulsar timing effect.

2.11.4. Production of gravitational waves

We have already looked at the almost flat case where we get plane waves:

h.w = Re ( / d3k:AW(k:)eikaza)

In general if we have a vacuum around arbitrary objects we get a curvature and thus
a background metric which is not Minkowski (g, # 7). Then O = ¢**D, D, has
eigenfunctions, which are more complicated than just e***. h,,, is then given by

hyw = /dgkAm,(k) - Eigenfunction(k,, )

Furthermore to find A, (k) we can only allow solutions with specific, non-trivial bound-
ary conditions. To demonstrate this we look at two systems A and B which are sur-
rounded by vacuum. Each non-zero contribution of GWs in the vacuum then induces a
non-zero contribution on the boundaries of A and B. To find the correct GWs one needs
to follow these steps:

1. Specify 7% #£ 0 inside A and B.
2. Solve G*F = 87T to find the metrics inside A and B.

3. Solve G*? = 0 to find the all solutions outside where gzl“,tSide =background
metric + arbitrary superposition of GW modes A, (k).
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4. Match g5 and gou*™'%® on the boundaries. This implies a unique solution for

A (k)%
/ / / /
/ GWs in vacuum /

Implications of Birkhoffs theorem on the production of GWs:

Birkhoffs theorem directly implies, that spherically symmetric sys-
tems cannot produce any gravitational waves (since their metric is
static). In fact one can show, that a quadrupole is needed (i.e. a
distribution of mass with the symmetry of a quadrupole, for proof @ @
see [9]) with periodic motion. This also implies, that rotating
disks do not generate GWs.
Systems which fulfil the requirements are for example binary systems
(two objects rotating around each other). For the GW generated to have any significant
effect these objects need to be as massive as possible (white dwarfs, neutron stars, black
holes) and need to be in close proximity to each other.
GW produced by such systems can in principle travel infinite distances if not interrupted
by matter?3.
Thes types of GWs are called astrophysical GWs and have been detected by LIGO
(2015), VIRGO (2017) and Hulse & Taylor (1974).

In the next semester we will talk about another mechanism which produces primordial

GWs.

32This procedure is similar to the methods used in electrostatics and electrodynamics to find the electric
potential and field. In fact we can often use the same mathematical tools, that we already used
there (Gauss law etc.).

33 As we have seen above the electromagnetic interaction in matter generates heat when a GW passes
through it. This means, that the GW has to lose energy (and thus amplitude) when going through
matter.
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—_—

other object

% (e.g. neutron
8ray,; gg
1 1r,-,1j()“111

Star)
Waye,

2.11.5. Remark on the degrees of freedom in GR

In general we call a field obeying to a wave equation of the form
|:|¢ + c e e — 0

a physical degree of freedom or propagating d.o.f.

In quantum field theory each independent propagating d.o.f. generates a physical parti-
cle (e.g. Higgs field—Higgs boson, A,, —photon, ...).

In GR the field we are looking at is g,, with 10 independent d.o.f. (if the gauge is
fixed) but only two are propagating d.o.f.: The two polarization states of GWs (for
a given k*). In attempts to quantize gravity®! these d.o.f. generate new particles called
gravitons which can exist even when there is vacuum everywhere (g, = 1., 7% = 0).
All the other d.o.f. are not propagating d.o.f. but just used to compute the trajectories
of particles. Thus they do not generate new particles. This also becomes clear in
the fact, that these d.o.f. vanish when there is vacuum everywhere.

Furthermore one can show, that since GWs/gravitons are described by the tensor &,
with two Lorentz indices they are spin 2 fields/particles.
Intuitively we can understand this if we recall, that spin N objects are invariant under
rotations by an angle of ZWW Hence gravitons are invariant 27” = m rotations. Indeed
if we think of the solutions + and x we see, that our ellipses are in fact invariant under
rotations by .

34Unfortunately so far only the quantization of the perturbation hyy (and not of the background metric
guv) and thus of the linear theory has been possible. This is due to the fact that a nonlinear theory
like GR leads to non-renormizable divergences for which no adequate solution has been found
yet.
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2.12. Einstein-Hilbert action

In classical field theory we have already seen (for more information on this topic see [10])

4 a a
S = [ dw £ (8, 90", ... )
~~~ ~N~ =~~~ = ~~

action 4D volume Lagrangian fields their possibly higher

element . . derivatives
derivatives

In the following we will look at the case where the action only contains first deriva-
tives of the fields.

A small variation of the field is then

¢ — 7+ §Pa
0,0 — 0,8 = 0,8 + 5(9,9%)

This means that a small variation of the action is

[ OL oL
= [ d o o
o / ! _aq)a5 * a(a#q)a)a(au )}

oL oL oL
_ 4 a a - a
a /d e T O <3(au¢a>5q’ ) On (a(auq>a)> o

~~
only depends on Lon boundary,
fixed by assumptions

where we treat ®* and 0,9 as independent functions. We can chose the boundary
conditions in such a way, that the second term vanishes and factor out §®® which leaves

us with
oL oL
_ 4 _ a
05 /d . {&I)a O <8(8u@“)>} 0®

J/

~
total variation of £ w.r.t. @

Classical mechanics: Among all possible trajectories the valid ones minimize the ac-
tion i.e. S = 0 which leads to the Euler Lagrange equation as discussed in 2.6.1:

oL oL
5oe O (a@cba)) =0

Quantum mechanics: All trajectories are possible but weighted according to their
action (path integral formalism).

We look at two classical examples:
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1. Scalar field in flat spacetime:
1 1

Using the Euler Lagrange equation this gives us

dV
Ue + — =
—I—dq) 0

with O = n*¥9,,0,. This is the well known Klein-Gordon equation.

2. Scalar field in curved spacetime: Since we know, that

g = / av ¢ L / Ao/ =gL

for curved spacetime we get

1 1
S = /d4x\/—g (§DM<I>D“<I> — V(cb)) = /d4x\/—g (§g’“’DM<I>DV<I> — V(CD))
H—/ . ~~ -\ ~ J/

comoving volume Lagrangian density Lagrangian
element

where D, is the covariant derivative. Sometimes the word Lagrangian is used
for the Lagrangian density as well, especially in flat spacetime where the two are
equal.

In this case we get back the same Euler-Lagrange equation and thus the same
Klein-Gordon equation

av
A
M

if we define J = ¢ D, D,. In this case the derivative contains the impact of
gravity on the trajectories.

3. GR in vacuum: In this case one can show, that
L=+v—gR = Sgnu :/d4x\/—g7€

1
=  O0Sgg = /d4x V=g (RW — EQWR) ogh”

where Sgy is the Einstein Hilbert action which was derived by Hilbert in 1915.
From here we directly see the Euler-Lagrange equation which is

G =0

just as we expect in vacuum.
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Full theory From this we can finally construct a full (classical) theory of gravitation
and other forces with the action

S = /d4x\/_ (erLM) (2.12.0.1)

where Ly, is the Lagrangian of all matter fields (fermions, gauge fields, Higgs, ...). The
variation w.r.t g"” then gives

v 5( _gLM)
4 M jnz
58 = /d ( 9o+ Végw 5g

Comparing the term in brackets with the Einstein equation gives us a fundamental
definition of the energy momentum tensor:

T 2_3(=v=9Lu) (2.12.0.2)

V=g agm

Then the Euler Lagrange equation is just the Einstein equation.

Conclusion: We can express the full classical theory of gravity and other forces through
the action. In this case we get

5<I>a —equations of motion for fields

° —equation of motion for the metric

5w
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3. Homogeneous Cosmology

In this section we will explore the evolution of the universe as a whole with time. Un-
til ~ 20 years ago this field of physics had been (almost) purely theoretical since no
observations with sufficient sensitivity had been performed.

3.1. Newtonian Cosmology

Newton’s law already implied some kind of dynamic of the universe. If we assume
homogeneity this results in a uniform expansion or contraction of the universe due to
the initial ratio of kinetic and potential energy which is contained in the universe.

It turns out, that the concept of homogeneity is only compatible with either a static
distribution or with a linear velocity field of the form

v=Hr

with a fixed parameter H which is called the Hubble parameter. Note, that this equation
just holds for a fixed time.
This velocity can also be redefined in terms of the redshift z which gives the famous

Hubble law:

But what is the time evolution of expansion? We can calculate this from the Newtonian
theory using Gauss’ theorem if we assume either a finite distribution of mass or a
radius of interaction where inside there are gravitational interactions and outside not.
Then we can take Newton’s law

M(r(t))
dt

use the conservation of mass inside our Gaussian sphere (d = 0) and integrate the

equation (first multiplying it by 7(¢)):
()  GM(r(t)) _k

2 r(t) 2

where k is the constant of integration. We can then replace the mass M(r(¢)) by the
volume of the sphere times the homogeneous mass density pmass(t) and rearrange the

equation to

(1) 8rG k

— ) = — Ppass(t) — .1.0.1
(20 =" ot (3.1.0.1)




3.2.1. Cosmological backgrounds and perturbation

The quantity 7/r is called the rate of ezpansion. Since M (r(t)) is time-independent this

means, that the mass density needs to evolve as pyass(t) Tﬁ,l(t) )

The behaviour of 7(t) is dependent on the sign of k.
e k> 0: r(t) can grow at early times but always decreases at some point.
e k <0: r(t) expands forever.

So there is a critical value for the homogeneous mass density pmass(t) which is

_ 3(r(t)/r(1)?
Perit = W

If pmass(t) is bigger than this value, the universe will re-collapse, otherwise it will keep
expanding forever.

The limitations of the Newtonian predictions In our previous calculations we as-
sumed that the universe is isotropic around us but did not check whether it is isotropic
everywhere (and thus homogeneous). Earlier we saw though, that homogeneous expan-
sion requires a linear law connecting distance and speed which is only fulfilled for & = 0.
So it seems like only the solution k = 0 is compatible with the cosmological principle.
Another big problem arises from the fact, that we used the additivity of speed for the
construction of our linear law. This cannot be applied at large distances though where
v ~ ¢ which happens around the characteristic scale called the Hubble radius Ry:

RH = C[{_1

at which the Newtonian expansion gives v = HRy = ¢

3.2. The Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric

3.2.1. Cosmological backgrounds and perturbation

To describe the universe as a whole we first need to think about the distribution of matter
and energy in it. The cosmological principle then leads us to the following assumption:

The exact description of the universe can be decomposed into two indepen-

dent problems:

e The background problem

e The inhomogeneity problem
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In the background problem one assumes, that in first approximation we can see the
universe as a smooth distribution of matter (i.e. we can average over the small
inhomogeneities like stars etc.). Then we can view all matter in the universe as a cos-
mological fluid and compute its dynamics.

The background problem consists of first order (or sometimes second order) perturba-
tions, which can describe the large-scale structure or the CMB.

For the formation of small scale structures (like galaxies, stars etc.) this approach does
not work since these are fully non-linear problems. They are usually solved through
many-body Newtonian simulations or similar approaches.

3.2.2. Coordinate choice

The FLRW model is the most general solution in GR under the assumption of a back-
ground universe which is homogeneous and isotropic!.

Under this assumption we can restrict the energy density p in such a way, that it is only
a function of time, but not of space:

plat) = p(°)

From this we immediately notice, that this means, that the notion of homogeneous and
isotropic is not a coordinate-independent property. In particular this means, that
a particular definition of time is preferred or more precisely a particular time-slicing.

A rescaling of t — t'(t) does not violate homogeneity but a mixing of time and space
does.

homogeneity conserved homogeneity not conserved RN

The easiest way to construct such a system of coordinates in a homogeneous universe
is to start from an initial homogeneous hypersurface and to assign to it a time coordinate
t, and an arbitrary spatial direction. We can then use three arguments to map the whole
spacetime:

1. If we place an observer at rest in our coordinate system %

homogeneity there is no bulk velocity due to some kind of force.

= 0 since due to

2. The time basis vector €y = €; must be orthogonal to the initial hypersurface in
each point since otherwise there would be a preferred direction.

1Originally Einstein and later De Sitter considered static solutions of the Einstein equation but these
were found to not describe the universe correctly.
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3. If we let each observer be free falling and measure their proper time, we can
define the coordinates at a different time in such a way, that at these coordinates
the clocks of all observers show the same proper time %,

The first argument allows us to map the whole space while not mixing space and time,
the second one shows, that

60'5%:0 = gol-:§6‘gu,,5§’:0, 1=1,2,3

The third argument can then be used to assign spacial coordinates to any point in time.
This type of set of coordinates is called comouving coordinates.

Using proper time ¢ we can then write down the explicit form of the metric (in non-
natural units):

ds® = —*dt® + g;;da'da? (3.2.2.1)

gi; is furthermore restricted in the sense, that it must preserve homogeneity and isotropy.
Its explicit form will be given by eq. (3.2.3.2).

Comments:

e As mentioned above a redefinition of time ¢ — ¢'(¢) preserves homogeneity although
the time coordinate does not correspond to the proper time. This is sometimes
useful to calculate specific things, although if we want to calculate the actual time
an observer measures we always need to take proper time.

e An internal redefinition of spacial coordinates 2* — 2% (%) will of course preserve
homogeneity. In the following we will mostly stick to spherical coordinates.

e A general change of coordinates mixing space and time does not preserve homo-
geneity. In particular this means, that an observer which moves w.r.t. the comov-
ing coordinates does not see the universe as homogeneous (he sees a blueshift in
one and a redshift in the other direction). Therefore there is a global comoving
frame.

3.2.3. Curvature

To specify g;; we need to use the consequences which we obtain when assuming homo-
geneity. Let us consider two small comoving sticks Sy and Sp with arbitrary rotation
and location. We assume that the ends of these sticks coincide with the locations of
comoving observers. We call their position coordinates @y, 2’5 and their vector coordi-
nates da’y, dz/s, i.e. the sticks stretch from 2, — dz’y/2 to 2’y + da’, /2 and 2% — da'y /2
to z% + dx'; /2 respectively. Hence their squared proper lengths just read:

ds% = gi;(2y)da’yda?, ds% = gij (%) dalyda?
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Then between two arbitrary times ¢; and t, the relative change in the proper length
should vary by a constant factor independent of orientation and location:

gij (o, #h)day ey gij(by, o) dafpdaly
- - f(t2> Zfl)

9ij(t1, ‘CC].Z)dxildx:jA i (t1, xlfg)d:cinxjé

which simplifies to

gij(ta, %) gij(ta, ay)
k - k - f(t27 tl)
9ii(tr, %) gi(ty, 2)

k

so at any arbitrary times ty,t, for fixed coordinates x* we get the simple relation

gij(ta, 2*) = f(ta2,t1)gs(t1, %)

From this we can conclude, that g¢;; can only depend on time through a global scale
factor f(t,t1) (where we interpret to as the “running” time ¢ and ¢, as a fixed reference
time). Since f appears in factor of squared quantities and needs to be positive to
guarantee, that proper lengths remain positive at all times it is preferable to refer to the

square root a(t) = 1/ f(t,t1) which we call scale factor.

Hence we have proven, that the spatial part of our metric can only depend on time
through a global scale factor a(t):
9i = a(t)*gi;

where g;; is time independent.

The only thing left to do now is to find a form for g,;.

This is fairly easy since there are only 3 types of metrics with constant curvature every-
where?:

1. Flat, euclidian space
2. 3-Sphere
3. 3-Hyperboloid

Conveniently choosing polar coordinates we can express all three cases through a single
parameter k € R:

2

1 —kr?

di? = §;;daida? = + r?(d6? + sin®*(0)dp?) (3.2.3.1)

where

1. k = 0 Euclidian universe (which is called flat universe)

2This is required to preserve homogeneity.
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3.2.3. Curvature

2. k > 0 The universe is a 3-sphere and thus has a finite volume. It is only defined
in a finite range 0 < r < r.. This type of universe is called closed universe

3. k < 0 The universe is a 3-hyperboloid and negatively curved. This is called an
open universe.

In the last two cases we can define the radius of curvature (of spacetime) as

Hence we have found the most general solution of a universe, which obeys the cosmo-
logical principle, the FLRW-metric:

2

1 — kr?

ds® = —2dt? + a(t)? + 72(d6? + sin®(0)d<?) (3.2.3.2)

If we look at the spatial part of this metric, we immediately see, that it just corresponds
to the line element which we computed in (3.2.3.1) times the scale factor a(t). Since we
can express all lengths by integrating the line-element over a path in three-dimensional
space we can also express a 3-dimensional, physical radius of curvature which is just

a(t)

vid

Rc,physica1<t) -
Comments:

e by rescaling r — r+/[k| and a(t) — 4L the metric has the exact form given in

N

(3.2.3.2) but we can restrict k to the three values +1,0

e As we will show in ex. 12, task 2 observers at rest with the cosmological fluid
stay at rest, i.e. all trajectories parametrized byz’ = 2%, = const are solutions
of the geodesic equation. Nevertheless the proper distances between points are
still increasing or decreasing. Thus the universe expansion is not described by the
proper motion of particles any more as it was the case in Newtonian cosmology
but rather by the evolution of spacetime itself.

e As we have seen the FLRW metric describes a curved spacetime with two different
kinds of curvature:

— The spatial curvature i% at each time

— The spacetime curvature described by the evolution of a(t)

While the first curvature is very intuitive the second one is a bit more subtle but
we will see the effect of both in effects like the trajectories of photons.

THEORY OF RELATIVITY AND COSMOLOGY 104



3.3.1. Photon geodesics

e Using the scale factor we can define an actual radius of curvature. The Hubble
radius

e For the case £ = 0 and a = const we could just redefine the coordinate system
with r,0, ¢ — ar, 0, ¢ we just get back the Minkowski metric, which underlines the
fact, that the curvature manifests itself as k # 0 for spatial curvature and @ # 0
for the remaining spacetime curvature.

e Sometimes equations become simpler when we redefine the time to dt = a(t)dr,
so the metric reads:
2

1 — kr?

ds® = a*(7) (—c2d7'2 + [ + r%(d6* + Sin2(0)dg02):|>
This metric exhibits conformal symmetry, thus 7 is called conformal time in op-
position to the proper time ¢ which is sometimes also called the cosmological time.

3.3. Light propagation in the FLRW universe

3.3.1. Photon geodesics

We know, that in GR photons move along geodesics with the speed of light. Hence in
an infinitesimal interval d¢ the photons move by di? = ¢2dt?>. Hence we can integrate
dl = +cdt to get macroscopic distances.

If we consider a photon along a straight geodesic (a free photon) and we assume, that
we are a comoving observer, we can choose the origin of our spherical FLRW universe
to coincide with our position®. Since we require isotropy the photon then still needs to
travel along a straight line, so in dr-direction, which means, that we can express the
distance travelled by

/ " dr B / Pedt
Te V 1— kTZ te a(t)
The solutions to this equation are indeed a solution of the geodesic equation. This
means that if we put ourselves at r = 0 in the FLRW universe we can further simplify

the equation above. Additionally the observer sees the photon at a time ¢ty which can
be implicitly deduced from r, and ¢, through the important equation

/0——dr —/toc—dt (3.3.1.1)
e VI—k? ), a(t)

Comments:

3This is just done to simplify calculations, it does not put us in a special position in our universe
(apart from the fact, that we are at rest with the cosmological fluid).
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3.3.2. Redefining the redshift

e The ensemble of points (t.,r., 0, ¢) for which (3.3.1.1) holds define our past-light
cone.

e We can already see the physical interpretation of the conformal time here since
the right side corresponds to 7, — 7,

3.3.2. Redefining the redshift

Again we place ourselves as a comoving observer at the origin of coordinates. We pretend
to observe a galaxy located at (r., 0., ¢.) emitting light at a given frequency v, = ¢/\..
with a period dt, = 1/v.. When we compute their trajectory with (3.3.1.1) we receive
it with a frequency v, = ¢/, = 1/dt, so

° dr rodt bt
/,ne‘ﬁ—krz‘/te @‘/we a(t)

Rearranging the second equality gives

/te+dte dt —/tr+dtr dt
e a(t) Jy, a(t)

so we get in very good approximation:

A dt. alt,)

Ae dt,  al(t,)

This is in fact the answer which we would intuitively expect since we already know,
that wavelengths become longer when the scale factor increases. Hence in the FLRW
universe the redshift is given by

CAN A=A alty)
X A alt)

z

—1 (3.3.2.1)

Comments:

e Unlike in Newtonian cosmology where z = v/c here the redshift is not restricted
to values < 1 since the scale factor a can be arbitrarily large without violating
the fundamental principles of GR
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3.3.3. Redefining the Hubble parameter

e Since there is a global comoving frame this equation only holds exactly if the
observer is exactly at rest w.r.t. the comoving frame. In reality this is never the
case, so we need to take this into account as an additional contribution coming
from the Doppler-formula from SR (see 1.6.8). These velocities rarely exceed values
of ¢/1000 so the correction is O(107?) and can be neglected for large distances. It
is however dominant for small distances.

3.3.3. Redefining the Hubble parameter

The Hubble parameter in the FLRW universe can be derived by taking the line-element
and looking at the Newtonian limit, which should read

v HL

2= = = —

c c
where L denotes to the physical distance to the object. To show this let us assume, that
we receive a light ray from a nearby point at ¢y so it was emitted at ty — dt. In the limit
of small dt the equation of propagation of light then gives

———— =cdt
VI ha?
while the redshift of the galaxy is
z= M — 1= a(t9) = .1 — 1= a(t[])dt
a(ty — dt) a(te) — alte)dt 1 — &lto) q¢ a(to)

and by combining the two equations above this gives

a(to) L
z = p—
a(ty) ¢
Hence Zgg; plays the role of the Hubble parameter at any given time. This means, that
a(t)
H(t) = —+= 3.3.3.1
(0 =50 (3331)
Comments:

o We will often use the current value of the Hubble constant which we will call
H,.

e While at small distances we recover the linear Hubble law, which links distance
and velocity (or redshift) but this approximation is only valid for small distances.
At larger distances we have to find a new definition of distance, which will be
discussed in the following.
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3.3.4. Distances

3.3.4. Distances
Comoving distance

As above we assume, that we are at the origin of a FLRW universe with spherical
coordinates at time ¢y and observe an object at (., e, Oc, Pe ).

The easiest way to define a distance is by assuming, that the object we observe is
comoving so at the time when we observe it it should be at (g, ¢, 0¢, ¢.). We can then
compute the distance on a constant time-hypersurface with t = ¢ and just integrate the
length-element:

Te dr
d= / dl = alty) ———
0 ( 0) vV 1-— k?’l“2
This is a unique definition of distance up to the normalization factor a(tq) which we can

choose to be 1. In this case the distance d coincides with the comoving distance x:

T dr
x(re):/o Ny (3.3.4.1)

which can be explicitly integrated for the three possible cases for k:
sin~'(r) if k=1
x(r)=«r if k=0
sinh™'(r) if k=-1
Comments

e We can also find an explicit form for y if we do not restrict £ to the values 1,0
(see ex. 12, task 3).

e It is useful to define

sin(z) if k=1
fe(x) =< if k=0
sinh(z) if k=-1
so that r = fi.(x).

e From (3.3.1.1) follows, that x(r) is equal to the conformal age of the object:

oo dt
() = / S = dn =)

which means, that in natural units conformal time and comoving distance are the
same.
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3.3.5. Angular diameter distance

e Although the comoving distance is a very nice definition of distance since it is
independent of time it is not something we can measure. This motivates the
definition of other, measurable distances.

The three things which enable us to measure distances, since we cannot determine them
directly are the redshift, the angular diameter of objects of known size and the
luminosity of standard candles. In the next two sections we will find relations between
the redshift and the other two, so effectively connections between all three types of
measurements.

3.3.5. Angular diameter distance

For objects of known physical size dl we can measure their angular diameter df and
calculate the distance through dl = d x df which we call the angular diameter distance:

dAE—

do
In Euclidian space with linear expansion we can easily find a relation between angular
diameter distance and redshift:

C

das = d = —
A HOZ

For the FLRW universe we need to additionally take into account the bending of light
rays which implies, that the physical size dl (evaluated at t.) of an object orthogonal to
the line of sight is

dl = a(t.)r. do

where ¢, is the time of emission and r, the comoving coordinate of the emitter.
Using (3.3.2.1) this give

T@
1+ 2,

da = a(te)re = a(to)
We can then replace r. with (3.3.4.1) which yields:

o= 0 ([

which if we replace dt by dz gives the important angular diameter-redshift relation*

da = fﬁi fi (/0 a(ts)—(ﬁ(z)) (3.3.5.1)

4This is a handy relation to test the validity of cosmological models if we already know the physical
size of objects. Luckily there are such objects called standard rulers
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3.3.6. Luminosity distance

3.3.6. Luminosity distance

If we know the absolute luminosity of objects we can infer their distance from their
apparent luminosity. In a Euclidian universe the relation between apparent and absolute
luminosity ist just [ = ﬁ. Although geometry is not Euclidian in cosmology we will
stick to that definition:

L
dr, =1/ — .3.6.1
I 51 (3.3.6.1)

the effect of curvature manifests itself through the different definition of the relation
between apparent and absolute luminosity in cosmology:

[ L
Ama?(t)r2(1 + z)?

SO

dL = CL(to)’f‘e(l + Ze) (3362)

We can again rewrite this equation in terms of the redshift which gives the luminosity
distance-redshift relation:

dy, = a(to)(1 + 2) fi (/0 W(Z(z)) (3.3.6.3)

Comments

e We can easily see the relation between angular distance and luminosity distance:

dp = a(to)re(1+ 2z) = a(t)re(1 4 2.)? = (1 + z.)*dy4

e In the limit z — 0 the three definitions of distance are equivalent and reduce to the

usual definition d = Hioz, so at small redshifts we gain no additional information

from the measurement of any of these quantities (apart from measuring Hy)

3.4. The Friedmann Law

The goal of this section is to link the curvature k and the scale factor a(t) to the source
of curvature: The matter density.

3.4.1. Einstein’s equation

From 2.8 we already know the relation between curvature and matter in any metric:

G, = 87GT,,
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3.4.1. Einstein’s equation

The Einstein tensor G, can be directly computed from the metric using its Christoffel
symbols. This yields the (unsurprisingly simple) result, that the Einstein tensor is
diagonal and G} = G3 = G3. This is a direct consequence of the invariance under
rotations which is a requirement of isotropy (see ex. 3, task 1).

As we have already seen the stress energy tensor of a perfect fluid takes exactly this
form. In particular for such a fluid we can use (1.7.2.2):

T = (pmcrr + PMCRF)UaUﬁ + pMCRFnaB

where we know, that in an MCRF (comoving frame) U* = (U°,0,0,0). Furthermore in
the case of the FLRW ¢op = —1 so
—1=U-U=U%w° = U=1, U, =-4&

v

which allows us to express the SET explicitly:

o O O

T, =

v

CJOCD'

s
o OowT O
oT O O

p

This underlines the fact, that the FLRW model is only compatible with a perfect cos-
mological fluid inhabiting the universe.

The first component of the Einstein tensor reads (not derived here)

()]

This is an interesting expression to study. It is in fact the sum of the squared spatial
radius R.(t) = £ \/“m and the inverse squared Hubble radius Ry (t) = £. This emphasizes

G00:3

what we already learned in 3.2.3 about the different types of curvature abundant in the

universe®.

Using the Einstein equation (with one index up and one down):

-G% = —87GTY,

k a\>
—2+ — :87TGp
a a

which when rearranged gives the famous Friedmann equation

LN\ 2
H? = <9> _sne K (3.4.1.1)

a 3 a?

we can rewrite the above:

3

5The additional factor 3 appears due to the three spatial dimensions.
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3.4.2. Energy conservation

Comments:

e We can rewrite p after thinking about the implications of the energy content con-
tained in p. We will do this in the next section.

e If we assume that all mass in the universe is non-relativistic, so p? < m? the
Friedmann law looks exactly like the Newtonian expansion law (3.1.0.1) with a(¢)
having the role of r(t).

Of course they are very different though since

1. In the Newtonian model the expansion leads to velocities > ¢, in the FLRW
model not

2. The Newtonian model forbids k # 0 since it violates isotropy, in the FLRW
model it is allowed.

3.4.2. Energy conservation
From the Bianchi identities the Einstein equation implies
G =T, =0

For the first component this is just an equation of energy conservation.
By explicitly computing the Christoffel symbols and using (2.5.2.2) and (2.5.3.1) one
finds, that this just yields:

P —33@ ) (3.4.2.1)

Hence the dilution of energy as the universe expands depends on the pressure®. In

homogeneous cosmology we usually look at the two limiting cases:

e Non-relativistic matter: In case of slow moving matter we neglect any kinetic
energies which implies p = 0 (a comoving box enclosing the fluid would not feel
any pressure), hence’

3

p:—39p = poxa
a

e Ultra-relativistic matter: In this case we know from statistical mechanics (see
[1] or [5]), that p = £. Hence

) 1 )
,O:—3g <1+—) :—4C—Lp = ,ooca’4
a 3 a

This can be understood if we remind ourselves, that the energy density of photons
is £/V. The dilution is V o @® and E o< a™'. Hence p oc a™*.

SMore precisely on the equation of state p(p).
"This result is obvious since V o a® = p &x a3
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3.4.3. Cosmological constant

3.4.3. Cosmological constant

The last thing to discuss in the Friedmann equation is the cosmological constant. This is
just an integration constant which can be added on the left side of the Einstein equation
without violating any principle:

G + ANgy = 87GT,

The constant A cannnot depend on time or space and is called the cosmological
constant. If we move it from the left side of the equation to the right we see, that the
cosmological constant is equivalent to a homogeneous fluid with the SET

I
v 8rG
In opposition to matter or radiation this fluid has p = —p which implies, that p = 0 so

the energy does not dilute.

While this had no good explanation in Einstein’s times the vacuum energy of QFT is
a good candidate for this this predicts a way larger cosmological constant then measured
though, so it remains a bit of a mystery.

3.4.4. Possible scenarios for the history of the universe

If we write the Friedmann law with all possible contributions discussed so far (sorted by
the speed of dilution) we get

H? = g 2—% +% _£+é
“\y) T Rt TyMT Ty

where pr denotes to the radiation- and p;; to the matter density. since they evolve w.r.t.
a with a™*,a73,a72 and a° if the scale factor keeps growing and assuming that all four
terms contribute we get a distinct order of domination of each term, which is best
illustrated in the graph below:

a

If we furthermore assume that one of the parameters strongly dominates over the
others we can compute the behaviour of the scale factor, Hubble parameter and Hubble
radius in each of the stages:

THEORY OF RELATIVITY AND COSMOLOGY 113



3.4.5. Cosmological parameters

Dominating o) 2 Type of
contribution <5) x alp) e 100 R (?) curvature
L decelerated
Radiation a* t1/2 2% 2t eecierate
expansion
Matter a? t2/3 2 3 decclerated
3t 2 expansion
Negative 42 ; 1 ; linear
curvature t expansion
Positi
C(t)lsrlv;\t]ire a=? t 2 t recollapse
Cosmological | , 1 acclerated
constant a” = const | exp(H1t) | o = /A/3 expansion

3.4.5. Cosmological parameters

Since we can only measure the quantities in the Friedmann equation today it is more
useful to rewrite it in terms of Hy instead of an arbitrary H(¢). If we then divide by H{
we get

e k A

1= 2
372 R0 M) Capm g

(3.4.5.1)

where 0 indicates, that we evaluate the quantities today. From this we can compute the
whole evolution of the universe.

A nice side-effect of this formulation is, that by construction the four terms in this
equation add up to 1 and hence are the relative contribution to the present universe
expansion. Hence it is useful to give each term a symbol:

Qr = %PR@
Qu = %pM,D
k
U=
A
N = 5

which simplifies the matter budget equation to
Qr+Qu+ Qe+ =1
An important consequence of this is, that the universe is flat if

QoEQR+QM—|—QA:1
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3.4.5. Cosmological parameters

which means, that at any time the total density of matter, radiation and A must be
equal to the critical density

pe(t) = 3552
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A. Proofs

A.1. Bianchi identities

There are two Bianchi identities! and two contractions of the second Bianchi identity,
which we call contracted- and twice contracted Bianchi identity. While the first one is
very straight forward to prove, the second one is a bit more subtle. We will present a
way of proving both:

First Bianchi identity:
we want to prove, that
R,

) = B + R + RY5, =0

The proof becomes trivial if we simply write out the representation of the Riemann-
tensor by the Christoffel symbols:

« o} « o}

« R ple’ «
R Buv — ~ Bru ﬂuﬂl—'—rau vB T Sovt B
R s = Ty = iy + TT5, — T,T,
ROC

pvpB
R ple’ « a o o o
vBp — tvwB PVB# + FUﬂFW B Ffw By

which altogether gives us for the sum:

Ra[ﬂw} = (Fglw - Sﬂ,#) + ( ﬁﬂﬂf - gu,v) + ( lofu,ﬁ - gv,ﬁ)
+ ( gu Zﬁ - F?u gu) + (ng gu - gy Zﬁ) + (FgﬁFZV - Fgﬁrgu)

=0 0

where in the last step we have used the symmetry of the Christoffel symbols.

Second Bianchi identity:
We want to show, that
Rasluw) = Rapuwx + Rapapy + Rapury =0 (A.1.0.1)

This identity can be shown using the first Bianchi identity but this is a very tedious
task, so we will show it using some considerations of the Riemann-tensor in a LPIF. For
this we first switch to a LPIF, so that

Jas = Tas + O(3(z")?)

lalthough the first one was discovered by Ricci.



3.4.5. Cosmological parameters

In this frame all Christoffel symbols vanish, so

(25.5.1)

0 9oy = GaBy — gaang - gogfgy = GaB,y

= Gapry = YaByy

Note, that however g,z # 0 in general. In particular this also means, that in the LPIF,
the covariant derivative of the Riemann-tensor is equal to its partial derivative:

Roguvie = Rapuv,e + terms involving I'

= Raﬁw/,e

This means, that the only thing left to do is to represent the Riemann-tensor in terms
of the metric and do the permutations:

Rapuy = Jao ( B~ LBy 17 [s —T7,T, )

ne v W opp
= Ra,@uu,e = Goo,e ( . ) + gaa(ng,ue - gu,ue)
=0
1

= 5900 (97 (956w + Gevs = Gpve) e = 97 (9seu + Geuws — Gome) ve)

This means, that we have expressed the Riemann-tensor solely through partial deriva-
tives of the metric, which commute. We can thus write

Raﬂ[uu;s] = Raﬁ[uu,e} = Yao ( gu,,ue - Fgu,eu) + (Fg,u,ez/ - Fg,u,z/e) + ( ge,u,u - ge,,uz)

(. J/ N J/ [ J/
-~ -~ -~

=0 U

Contracted Bianchi identity
We want to show, that

Rﬁzx;e + Raﬁye;a - Rﬂe;u =0

This is simply done by contracting the second Bianchi identity with the metric ¢** and
use, that we can pull the metric through the derivative since go‘ﬁ;6 =0

0= gauRaﬁuu;e + gaMRaﬁsu;u + ga,uRaBVe;u
— ~— ~—
:Rﬁu;e :_ga#RaﬁﬂeiV:_Rﬂe;u =R

= R,By,e + Raﬁus;a - Rﬁe;l/ u

R

H — Rx
Breu Bre;a
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3.4.5. Cosmological parameters

Twice contracted Bianchi identity We do another contraction of the indices in the
contracted Bianchi identity and show, that

2- R, —R.u=0
We multiply the contracted Bianchi identity with ¢”¢ and get:
0= gﬂeRﬁu;e + QBERagye;a - Q&Rﬂe;y
- gﬂeRBu;e +979° Ropuea — R
= gﬁeRBu;e + 9" Rovia — Ry
=2 Q'BERﬂy;e — Ry
=2-R%.,— R, OJ

A.2. Number of independent components of the
Riemann-tensor

We want to prove, that the Riemann tensor has only 20 independent components. To
do this we use the symmetries

Roguw = —Rgg 1 = ~LRapvp =+, 08
— Ll -

| I |
and the first Bianchi-identity (see A.1). We look at the distinctive components:

e All components, with the first two or last two indices being the same vanish, since
they are their own negative:

ROéOé o _ROéOé wo— 0
| N | N
So all components of the form Rynaa, Raaass Raauw vanish.

e There are 6 independent components of the form R,z,3, which are the number of
possibilities to arrange 2 indices which can take 4 values ((3) = 6)

e There are 12 independent components of the form R,g.,, which are

}%0102 }%0103 }%0203

}31213 }31013 }%1012
}%2123 }%2021 }%2023

R332 | R3031 | R332
e Lastly we have 3 independent components if all indices are different:

Ro123; Rozi2; Rogst

But because of the first Bianchi-identity R,3,,) = 0 these three degrees of freedom
reduce to two.

Therefore we have 6 + 12 + 2 = 20 independent components. O
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B. The Schwarzschild solution

B.1. Trajectories of test particles

Massive particle

While there is no general, analytical solution to the differential equation (2.9.2.1) we can

look at the behaviour of
- oM L2
V= (1-22) (1+ 2
(r) < r ) ( + 7‘2>

We differentiate with respect to r and find

dv?  L2(6M — 2r) + 2M7r?

dr r4
and find the extrema at
L2 A -
= — — 2
r Wi + e 3L (B.1.0.1)

which means, that for L? < 12M? we get no solution and for L? > 12M? we get two
solutions. From the second derivative we see, that the extreme with the — sign is a
maximum and the other one a minimum.

We can then plug rpy;, and ry.y in the original equation and get:

2 -3
2 2 __ 2 2 2 _ 5
2 =2L2<L2—4M2+\/L (L 12M)M> ‘(LQJF\/L (L 12M)M>

max M2 M2

2 -3
L? (L2 — 12 M?) L? (L2 — 12 M?)
2 2 2 2 2
V2 o =2L (L —4M—\/ . M) -(L—\/ e M

Massless particle

We start with the equation (2.9.4.1):



3.4.5. Cosmological parameters

If we take the derivative we get

dv:_ 2 6M
dr 3 rd

which means, that there is a single maximum at

Tmax = oM
with
L? L
V2 = a7 = Vmax -
max 27M2 /—27M
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