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Die hier angegebene Literatur ist nur eine Auswahl an Büchern, die ich selbst hilfreich
für das Verstehen der Vorlesung fand. Sie ist keinesfalls komplett.
Außerdem baut diese Vorlesung maßgeblich auf den Theorievorlesungen des Bachelors
auf. Für allgemeine Informationen zu diesen Themen möchte ich auf die Zusammenfas-
sung von Jannis Zeller [1] (sehr kompakt), sowie auf die Lehrbuchreihe von T. Fließbach
[2],[3],[4],[5] (ausführlichere Erklärungen, sowie Übungsaufgaben) verweisen.
Zusätzlich wird Spezielle Relativitätstheorie zum Verständnis der Vorlesung unbedingt
benötigt. Obwohl Am Anfgang dieser Zusammenfassung eine kleine Einführung gegeben
wird empfehle ich für mehr Informationen [6] und [7].

Diese Zusammenfassung wurde nach bestem Wissen und Gewissen geschrieben. Trotz-
dem kann ich kann nicht für die Richtigkeit der Angaben garantieren. Falls grobe
Fehler auftauchen sollten oder für sonstige Anmerkungen bitte ich um eine E-Mail an
jonas.el.gammal@rwth-aachen.de.
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1. Special Relativity

1.1. Principles of special relativity

We start with the Special Theory of Relativity (SRT) which we need as foundation to
build the structure of General Relativity (GR). This is just a small introduction, for a
more detailed course see [6].
First, we need three postulates, from which we can build up the mathematical framework
of the SRT.

Principle A ("‘old relativity principle"’)

All inertial observers are equivalent and experience the same laws of physics.

An inertial system is a system, which experiences
no acceleration. In particular, in two systems mov-
ing at constant velocity relative to each other, the
laws of physics are the same. This in turn means
that physical laws explored on Earth are general-
izable, despite the fact that not all velocities of the
Earth relative to other objects are known to us.

Principle B

The speed of light is the same in all inertial frames.



Bibliography

This postulate, which was first implied by the experiment
performed by Michelson & Morley, showed that the Galileo
transformation could not be sufficient to describe describe
the transformation from on inertial frame to another. This
can be made clear by the following thought experiment. If
one imagines a rocket through which a laser beam is shot
and requires a constant speed of light in the frame of the
laser shooter and the rocket, one notices that the time spent
by the laser beam in the rocket is not the same in both
inertial systems (laser, rocket). The paradox was solved
when Lorentz proposed an alternative transformation that
requires a different understanding of space and time for each
observer.

Principle C

The dynamics in special relativity are given by the equation

d~p

dt
= m

d~U

dt
= ~F (1.1.0.1)

Here ~p describes the 4-momentum, ~U the 4-velocity (d~U
dt

then is the 4-acceleration) and ~F the 4-force. These will be
defined in 1.6.

1.2. Lorentz-Boosts

We will now work in 4-dimensional space-time. We call a point in this space Event to
clarify the concept of space-time. Such a point is therefore a vector

~v =


t
x
y
z

 =

(
t
x

)

A trajectory now becomes 4-Dimensional as well and we call it World line.

We want to represent the connection between two different frames by a transformation.
We therefore consider a simple example in which there is one observer in the O and on
in the Ō system, whereas Ō moves with the speed

v =

v0
0



Theory of Relativity and Cosmology 8
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relative to O. This simplifies the general transformation
t
x
y
z

↔

t̄
x̄
ȳ
z̄


to 

t
x
0
0

↔

t̄
x̄
0
0

 .

Without sacrificing the generality, we can set our origin to ~x = 0.
Let’s start with some graphical considerations. First we draw into O a x and a t-line,
which we will multiply by c to get the same units. The choice of c is due to the fact that
this is the only thing which must remain constant in O and Ō. It is clear that a light
pulse then travels along a 45◦ line.
We cab easily construct the ct̄ line if we look at an event stays at rest in 0̄. We then
obtain x̄ = 0. If we look at the object from O its position is given by

x = v · t which leads to ct =
c

v
x .

The angle θ between the ct and ct̄-axis is then given as

tan(θ) =
v

c

We can graphically construct the x̄-axis by plotting two light pulses at the same time
on the x̄ = 0 line, moving at 45◦ in both inertial systems. Thus, we immediately find
that the x̄-axis is also tilted by the angle θ. A diagram of this type is called Minkowski
diagram.

Theory of Relativity and Cosmology 9
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Figure 1.1.: Construction of the O and Ō systems in the Minkowski diagram

We will now write down the most general transformation that connects these inertial
frames. For this we impose the important condition that the transformation is linear.
This is justified by the fact that in our diagram, straight lines are mapped to straight
lines and areas are preserved. We simply write this transformation down, for a derivation
see [6]. (

ct̄
x̄

)
= γ

(
1 −v

c

−v
c

1

)(
ct
x

)
γ is a normalization factor that is unknown so far, but we know that

• γ can only be a function of v or c or both

• γ can only depend on |v| (if we rotate the coordinate system the norm should be
preserved)

• If ¯̄O moves with −v relative to Ō the transformation should give us back O.

We can determine γ by doing a double-transformation (O → Ō,Ō → ¯̄O):(
ct
x

)
= γ

(
1 −v

c

−v
c

1

)
· γ
(

1 v
c

v
c

1

)(
ct
x

)
⇒ γ =

1√
1− v2

c2

Theory of Relativity and Cosmology 10



1.3.1. Lorentz-Contraction

Alternatively we can calculate γ by using Λ · Λ−1 = 1 and(
a b
c d

)−1

=
1

detΛ

(
d −b
−c a

)
.

Note: In the following, we will often use Λ for a general Lorentz Transformation (LT),
and β := v/c will be used as an abbreviation (later we set c = 1, so β = v). This factor
is called Lorentz factor.
In addition, we will use the common signature in cosmology (−,+,+,+) (versus (+,−,−,−)
in high energy physics) for the metric tensor. This changes a sign in some places (es-
pecially in some norms, which follow from the preservation of the length element), but
leaves the structure of the equations invariant.

to avoid confusion, I will try to consistently use the notation v (bold) for 3 vectors
and ~v (vector arrow) for 4 vectors.

1.3. Consequences of Lorentz-Boosts

1.3.1. Lorentz-Contraction

We imagine a staff at rest in Ō with the length l̄ hat. What is its length in O? We will
go back to graphic:

xB − xA = xB = xC − vtC

l̄ = x̄C − x̄A = x̄C

because we chose our systems to fulfil xA, x̄A = 0. We now compute the speed:

v =
xC − xB

tC − tB
⇒ xC − xB = vtC

(
ct̄C

x̄C

)
= γ

(
1 −v

c

−v
c

1

)(
ctC

xC

)

Theory of Relativity and Cosmology 11



1.3.2. Time dilation

Using the above equations, we obtain:{
ct̄C = γ(ctC − βxC) = 0

x̄C = γ(xC − vtC) = l̄

l̄ = γl

So the staff is the longest in its rest frame!

1.3.2. Time dilation

We place a clock that rests in Ō and ticks every ∆t̄. Ō moves again at v in the x-direction
relative to O. We are looking for ∆t. We examine two events:

First tick: (x̄, t̄1)↔ (x1, t1)

Second tick: (x̄, t̄2)↔ (x2, t2)

We carry out the LT and receive:

c∆t̄ = γc∆t− γ v
c

∆x

0 = ∆x̄ = −γ v
c
· c∆t+ γ∆x

We put ∆x from the second equation into the first one and get:

c∆t̄ = γ · c (1− β2)︸ ︷︷ ︸
1/γ2

∆t

=
c

γ
∆t

⇒ ∆t = γ∆t̄ > ∆t

Times are thus the shortest in their rest frame!

1.3.3. Composition of Velocities

Unlike the Galilei transformation, the Lorentz transformation does not simply add up
velocities:

Λ(v1)Λ(v2) 6= Λ(v2)Λ(v1) 6= λ(v1 + v2)

We envision three systems, where Ō moves at velocity v relative to O and ¯̄O moves at
w relative to Ō. The added velocity is then (proof exercise 1, task 1)

Λ(w)Λ(v) = Λ

(
v + w

1 + vw
c2

)

Theory of Relativity and Cosmology 12



1.3.3. Composition of Velocities

1.4. Intervals and Lorentz-Transformations

In “classical” mechanics (Galilei transformation, hereafter calledGalilean mechanics) we
know that the norm ϕCS is invariant under

• 3D-rotations

• 3D-translations

We measure the norm by d =
√

∆x2 + ∆y2 + ∆z2.
As we have already seen lengths and times are not preserved in SR, but it is true that
ϕSR is invariant under

• 3D-rotations

• 4D-translations

• Lorentz-Boosts

So we need a new invariant under Lorentz transformations. This is (proof in exercise
1, task 2)

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2

The square should be viewed with caution, as it is not positive definite. In partic-
ular:

• ∆s2 = 0 Events are separated by a light ray, we call them Light-like interval

• ∆s2 < 0 Events are separated by something slower than light. We call them
Time-like interval

• ∆s2 > 0 Events can not be connected by any world line, because the speed of light
would have to be exceeded. We call them space-like interval

Since ∆s2 is invariant under LT, the type of event is
the same in all inertial frames. In particular, how-
ever, this also removes the concept of simultaneity
(see ex. 1, task 3). This makes it clear that only cer-
tain events (time-like, light-like) can be perceived by us
at all. We now want to write down the general Lorentz
transformation, which consists of a Lorentz boost and a
3D rotation. To simplify the formulas we will consider
the case of a x-direction boost and a rotation around
the z-axis:


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 ·


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



Theory of Relativity and Cosmology 13



1.5.1. Absolute geometrical objects

1.5. Lorentz-Algebra

1.5.1. Absolute geometrical objects

Since we want to transform from one coordinate sys-
tem into another, but despite frame dependency, things need to exist independently of
coordinate systems1, we try to find well-defined objects, which we call absolute geomet-
rical objects and which we can use to construct other physical variables. These are for
example:

• Event : An event is well-defined and has a place and a time, even though the
individual components {xEα} are frame-dependent.

• Vector between two Events: Since events are well-defined, the vector
−−−→
E1E2 is also

well-defined. Again, although ~v = {vα} is absolute, its components change when
transforming into another base.

• Scalar fields: A scalar function Φ(E) is absolute, it too can be represented in a
base, with Φ(xα) being frame-dependent though. If we now transform an event into
another coordinate system, we also need to transform the scalar field to preserve
totality.

E : xα 7→ x̄α

⇒ Φ(xα) = Φ̄(x̄α)

• Scalar products ~vA, ~vB ⇒ s = ~vA · ~vB. The scalar product is completely
independent of basis in the sense, that

~vA(xα) · ~vB(xβ) = ~vĀ(x̄α) · ~vB̄(x̄β)

It is thus a Lorentz-invariant.

• Direct product ~vA ⊗ ~vB with

(~vA ⊗ ~vB)αβ = vA,αvB,β

1.5.2. Lorentz-Algebra with standard vectors and matrices

For an event we will use the notation:

E : xα, x̄ᾱ (or β or. . . )

and for a vector:

~AB : vα, v̄ᾱ

1We cannot just make objects disappear by switching frames

Theory of Relativity and Cosmology 14



1.5.3. Lorentz-Algebra with Covariant notation

For a LT we need a sum, which we will usually leave out in the following (Einstein
notation):

x̄ᾱ =
∑
α

Λᾱαxα

The summation over α is often called contraction (since we essentially contract one
dimension). The indices are switched for the reverse-transformation:

xα = (Λ−1)αᾱx̄ᾱ

Vectors transform like coordinates:

v̄ᾱ =
∑
α

Λᾱαvα

When we look at the gradient of a scalar field it quickly becomes clear why we need
co- and contravariant vectors. Here we will use the names vector and covector. If we
consider a small variation dΦ we obtain:

dΦ =
∂Φ

∂xα
dxα

By LT, we realize that we need an object that transforms with Λ−1 to leave the scalar
field invariant:

dΦ̄ = Λ−1
ᾱα

∂Φ

∂xα
Λᾱβ dxβ

We call the objects that transform withΛ−1 covectors. In particular, we see that scalars
that are invariant under LT always have to consist of a composition of vectors and
covectors.

1.5.3. Lorentz-Algebra with Covariant notation

In order to be able to unambiguously classify vectors (contravariant) or covectors (co-
variant) in complicated calculations, we now introduce the following notation:

• Index up: Contravariant index vα

• Index down: Covariant index vα

• Latin Letters: i = 1, 2, 3 (3D-space)

• Greek Letters: α = 0, 1, 2, 3 (4D-spacetime)
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1.5.3. Lorentz-Algebra with Covariant notation

Lorentz-tranformation
We implement our new notation:

Λᾱα becomes Λᾱ
α

Here we have left the order of the indices equal to underline the tensor nature.
Thus, a vector transforms like

v̄ᾱ =
∑
α

Λᾱ
αv

α

It can already be seen that two indices, one appearing at the top and one at the bottom
are contracted (summed up). This is no coincidence, the order of tensors must be con-
served, and the symmetry of the LT, as discussed in the last section, requires contracting
over a co- and a contravariant object. This brings us to the next convention.

Einstein sum convention
Since we contract always on the same indices, one of which is a co- and one a con-
travariant, we will omit the sum-sign in the following. This more compact notation is
called Einstein sum convention.

Tensors of rank i
j

If we want to Lorentz-transform any tensor (e.g. Rα
βγ) we need to apply the correspond-

ing LT to every index:

R̄ᾱ
β̄γ̄ = Λᾱ

α(Λ−1)β
β̄
(Λ−1)γγ̄ R

α
βγ

Scalar products between vectors
We have already constructed the Lorentz transformation to leave ∆s2 invariant. By
rewriting ∆s2 we get:

∆s2 = −∆t2 + ∆x2 + ∆y2 + ∆z2

= ∆xµηµν∆x
ν

= ∆x̄µ̄ηµ̄ν̄∆x̄
ν̄

= ∆xµΛµ̄
µηµ̄ν̄Λ

ν̄
ν∆x

ν

which gives us a transformation for ηµν :

ηµν = Λµ̄
µηµ̄ν̄Λ

ν̄
ν

We call ηµν the Minkowski- or metric tensor. It is of rank

Rang :

(
0→ “Contravariant” rank

2→ “Covariant” rank

)
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1.6.1. Proper time

Furthermore we can explicitly write out ηµν :

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Note: This metric only holds in SR, in GR it becomes considerably more complicated.

The metric tensor enables us to rewrite the scalar product as:

~v · ~w = vα · ηαβ · wβ = vαw
α

Explicit LT in particular shows that the scalar product is a Lorentz-scalar. (It is also
visible the structure, as it is a contraction of a co- and a contravariant vector)

We furthermore see from

vµ ηµν = vν

that we can identify η as a index-lowering tensor. Assuming the existence of an index-
raising tensor Nµν , we immediately find that this tensor should be the inverse of ηµν .
With ηµν being its own inverse this gives:

Nµν = (ηµν)
−1 = ηµν = ηµν

1.6. Lorentz-vectors for physical variables

In classical mechanics we defined our variables as 3-variables (v,a,F ,...) and found some
laws (Ė = 0,ma = F ). However, these no longer necessarily apply in SRT. In particular,
we want to express all quantities by 4-vectors, so that we get back the structure of our
equations after Lorentz transformation on both sides. For this, we have to generalize
our old laws to new ones. This first requires some definitions:

1.6.1. Proper time

If we again use the concept of world lines, we can draw a small distance separating two
objects into our diagram

d~x = (dx0, dx1, dx2, dx3)

We then have two possibilities for constructing the proper time:

• Constant velocity: There is a rest frame fulfilling d~x = (dx̄0, 0, 0, 0). In this frame
the proper time is given by t = x̄0.
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1.6.2. 4-velocity

• Acceleration: At any given moment we can find a rest frame with the same char-
acteristics as above (MCRF, Momentarily Comoving Reference Frame). t is then
given as the integral of dx̄0 over all MCRFs.
The proper time is the time, that is measured by an observer in the MCRF,
while the coordinate time is obviously dependent on the choice of coordinates and
does not always have a direct physical interpretation.

Note: In literature the proper time is often written as τ (in contrast to the
coordinate time t). For now t will be written as x0 though, which is also a consistent
notation, later in GR we will use τ and t when we switch to spherical coordinates.

Figure 1.2.: World lines for a inertial frame (left) and an accelerated frame (right). It
immediately becomes clear why the condition we imposed on direction and norm

uniquely defines the proper time.

1.6.2. 4-velocity

We motivate the definition of 4-velocity from classical mechanics where the velocity is
given as v = dx

dt
. We generalize this to SR by taking the 4-vector and the proper time.

This is a Lorentz vector since the length transforms with Λ and t is a Lorentz scalar:

~U =
d~x

dt
(1.6.2.1)
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1.6.3. 4-acceleration

~U is tangent to its world line. In particular we find for the norm of ~U :

~U · ~U =
dxα

dt
ηαβ

dxβ

dt

=
dxαηαβdxβ

dt2

=
ds2

dt2
= −dt2

dt2
= −1

So we can alternatively define ~U as the Lorentz-vector which is tangent to the world line
with norm −1.
In practice we sometimes see the case where only x0 is known and t(x0) has a complicated
form. Then we use the chain rule and get

~U =
∂~x

∂x0

dx0

dt
⇒

(
∂~x

∂x0

)2(
dx0

dt

)2

= −1

Which gives us a handy way of calculating dx0

dt
:

ẋ0 :=
dx0

dt
=

√
− 1(

∂~x
∂x0

)2

(We will use this relation in ex. 3, task 3.3)

The explicit form of the 4-velocity is given by:

~UMCRF = (1, 0, 0, 0) ⇒ ~U = (γ, γv1, γv2, γv3) (1.6.2.2)

1.6.3. 4-acceleration

The definition of the 4-acceleration follows directly from the definition of the 4-velocity:

~a =
d~U

dt
=

d2~x

dt2

In particular the 4-acceleration of an arbitrary MCRF is always perpendicular to its
4-velocity. Geometrically the four-acceleration is the curvature of a world line.

1.6.4. 4-momentum

We define the 4-momentum in analogy to the classical momentum as

~p = m · ~U
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1.6.5. Energy in arbitrary frames

We immediately see, that ~p is a Lorentz-vector (m is a frame-independent scalar). We
can then perform a LT into another frame and see that

~pMCRF = (m, 0, 0, 0) ⇒ ~p = (mγ,mγv1,mγv2mγv3) = (E, p1, p2, p3)

whereas E is the energy in our frame and p = pi is the 3-momentum. Why is the
0-component E the energy? This question will be clarified below:
First we do a Lorentz-boost in the x-direction out of our rest frame.

p̄ = (m, 0)⇒ p = γ

(
1 v
v 1

)
p̄ = (γm, γmv)

In order to find a connection with the energy we first look at the classical limit:

E = γm =
m√

1− v2

v�1→
(

1 +
v2

2
+O(v4)

)
⇒ E ≈ m︸︷︷︸

rest energy

+ m
v2

2︸︷︷︸
kinetic energy

We see that the mass is independent of the observer (at least according to our definition
of the mass, often in the literature E is called “mass”. While this is a valid way of
defining mass, we then have to call m the rest mass which would not correspond to our
intuitive perception of mass). We calculate the square of ~p:

~p · ~p = m~U ·m~U = −m2 as well as

pαηαβp
β = −E2 +

∑
i

(pi)2

From this we get the (very famous and practical) equation

E2 = m2 +
∑
i

(pi)2 .

In summary, we find the following properties of the the 4-momentum:

• ~p ‖Worldline

• ~p · ~p = −m2

• p0 = E

1.6.5. Energy in arbitrary frames
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1.6.6. 4-force

We imagine a particle and an observer moving at
different speeds. We call the particle’s rest frame P
and the observer’s O. We look at both systems from a
third frame G which moves relative to O and P .
We know ~pparticle and ~Uobserver as seen from G. If we
now want to compute the particle’s energy as seen by
the observer.
Since each of the three systems sees a different energy
of the particle, we need to define a Lorentz-invariant
which we can compute in any frame which will give us
(EObs). We define EObs as

EObs =− ~pGp · ~UG
O

Lorentz-scalar
= − ~pObs

p · ~UObs
O

=~p0,Obs
p = EObs

Since this is a scalar product of two Lorentz-vectors it is invariant under LT and thus
gives us EObs regardless of the frame we compute it in:

EObs = p0
p · U0

O −
∑
i

pipU
i
0

By explicitly calculating the scalar product we see that EObs in fact corresponds to

EObs = m · γ(vObs,vparticle) .

Now that we have our energy defined, we need to verify that it satisfies definition of
energy in a physical sense. In particular we need to check the conservation of energy.
To do this, we define the 4-force and examine the conservation laws.

1.6.6. 4-force

The 4-force is again defined in analogy to the classical force (derived in [6]) and gives us
postulate C (see 1.1):

d~p

dt
= m

d~U

dt
= m~a = ~F

We see no (obvious) connection between 4-force and 3-force from this definition. This
will be discussed later.

Using this definition we see that if no force is applied to an object conservation of
energy and momentum still hold:

~F = 0⇒ d~p

dt
= 0⇒

{
dE
dt

= 0 conservation of energy
dp
dt

= 0 conservation of momentum
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1.6.7. Massless particles

1.6.7. Massless particles

For a massless particle, we have the problem that we cannot find a rest frame since in
this frame c = 1 would be violated. This also prevents us from finding a proper time
and therefore we have no valid definition for ~u = d~x

dt
. Taking the limit m → 0 would

also not solve the problem since ~u would diverge while while ds2 = −1. This forces us
to chose a different approach by just defining

~p = (E, p1, p2, p3)

with

pαp
α = 0

We define E as the energy, which we measure in our reference frame, which allows us
to construct the momentum from the direction of the particle and the condition above.
We check if these definitions are compatible with our previous ones:

• ~p is (obviously) a 4-vector

• E2 = m2 + p2 is consistent since m = 0 gives us the correct energy

• The energy which an observer measures is E = h · ν

With this we can now calculate the relativistic Doppler effect.

1.6.8. Doppler effect

We look at two reference frames G and Ḡ, with

~p = (E,−E, 0, 0) E = hν

~̄p = (Ē,−Ē, 0, 0) Ē = hν̄

(Each of the frames sees the light ray moving away from it).

p̄α = Λα
βp

β

p̄0 = Λ0
βp

β = γE + γvE

⇒ hν̄ = γhν(1 + v) = hν

√
1 + v

1− v
We thus get a shift in frequency of:

ν̄

ν
=

√
1 + v

1− v

In the classical limit we get the same proportionality as with the normal (acoustic)
Doppler effect:

∆ν

ν
=

√
1 + v

1− v
− 1 = v +O(v2)
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1.7.1. Number flux vector

1.7. Relativistic hydrodynamics

This part will focus on relativistic hydrodynamics. The goal here is to transfer n(x),
ρ(x), P (x), T (x), that is, thermodynamic quantities to the theory of relativity. We will
look at three different scenarios:

• Dust: Collision less particles, particles keep their velocities

• Perfect fluid: Strong interaction between the particles ⇒ (isotropic) pressure,
thermodyn. equilibrium

• Imperfect fluid: Weak interactions ⇒ viscosity, no thermodyn. equilibrium.

We will look at the first two cases as limits of the (only realistic) third case and intro-
duce the concepts of the number-flux-vector and the stress-energy tensor by using the
exemplary cases above.

1.7.1. Number flux vector

As we will see below, the number density n = N
V
, which in thermodynamics is a con-

served, intensive variable (at least in thermodynamic equilibrium), is not conserved in
relativity due to the volume being observer-dependent. Therefore we need a new type of
4-vector, which describes the number density and transforms like a Lorentz-vector. To
construct this we will look at two cases:

Dust with uniform velocity
In the case of dust, where all particles have the same velocity v there is an MCRF in
which all particles rest. We can then define the number density n(xα) = N

V
which is not

Lorentz-invariant, which we can see if we perform a Lorentz-Boost into another frame:

O → Ō with velocity v in e1-direction

V = ∆x1 ·∆x2 ·∆x3 → V̄ =
1

γ
∆x1 ·∆x2 ·∆x3

We thus get

n̄ =
γN

V
= γn

One can easily see, that n transforms like the 0-component of a Lorentz-vector.
Hence we are searching for a 4-vector with the components

~(. . . ) = (n, f 1, f 2, f 3)

We identify the 3-vector f as the particle number flux. With this in mind we construct
f 1:

f 1 =
#particles which cross the ⊥ e1-plane

surface · time

=
n · S · v1∆t

S ·∆t
= nv1
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1.7.1. Number flux vector

Now we want to check if we indeed constructed a Lorentz vector. If we take the MCRF
of the dust O and another frame Ō which is moving in e1-direction relative to O we get

f̄ 1 = f 1 · (Velocity of O in Ō)

= n̄ · (−v) = −γnv

We thus get the transformation from (n, 0, 0, 0) in O to (γn,−γnv, 0, 0) in Ō which is
the desired property for our 4-vector. We call this Lorentz-vector number flux ~N . In
general we can write it as

~N = nMCRF · ~U
~N · ~N = n2

MCRF · ~U · ~U = −n2
MCRF

From the norm of ~U we obtain a very easy way to get nMCRF:

nMCRF =

√
− ~N · ~N =

√
−NµNµ

Particles with arbitrary velocities
If we have many particles with arbitrary velocities, it is clear, that we can only get a
Lorentz-vector if we define ~N as

~N =
∑
p

1

VMCRF,p

~Up .

The reason here is that ~N can only be a Lorentz-vector if the factor 1
V

from above is
Lorentz-invariant. We therefore see, that we need to calculate V in every particle’s rest
frame and cannot just simply factor out 1

V
from the sum. Fortunately, however, we have

a relation for scaling the volume V̄ = γV . This gives us

~N =
∑
p

1

V γp
~Up

=
1

V

∑
p

γ−1
p
~Up

=

(
N

V
,

∑
p v

1
p

V
,

∑
p v

2
p

V
,

∑
p v

3
p

V

)

For this, the definitions of ~Up from (1.6.2.2) was used. But since ~N is a 4-vector, we
can find a frame with N = 0 and have thus found a N0 = nMCRF. The “MCRF” is
to be viewed with caution, since this is no true rest frame (the thermal velocity of the
particles still exists), but only moves at the bulk velocity of the particles.
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1.7.2. Stress-energy-tensor

1.7.2. Stress-energy-tensor

Let us now turn to the energy density ρ(xα). It shall be of the form∑
pEp

V
=
N〈Ep〉
V

.

Again we look at different cases:

Dust
If we naively transform from the MCRF into any arbitrary frame we get

E : m 7→ γm

V : v 7→ γ−1V

This means, that ρ transforms like

ρ =
Nm

V
7→ ρ̄ =

Nγm

γ−1V
= γ2ρ

So we have to consider an object of a higher rank than a vector. We define this tensor
so

Tαβ → T 00 = ρ

Which gives us the right behaviour under LT. We define the whole tensor as the tensor
product (derived in [6]):

T = ~p⊗ ~N = m · nMCRF · ~U ⊗ ~U, Tαβ = T βα = m · nMCRF · UαUβ

Since two identical vectors occur in the tensor product, the stress energy tensor (SET) is
symmetric and of rank

(
2
0

)
. Since furthermore ~v = (1, 0, 0, 0) in the MCRF, this means

that in this frame T is 0 in all components except T 00 = ρMCRF.

Let’s explicitly calculate an LT of a SET. Imagine again a frame Ō, which moves
relative to the MCRF with −v. We are boosting in a general direction. Then Λ(−v)
takes the following form:

Λ(−v) =


γ γv1 γv2 γv3

γv1

γv2

γv3


The unspecified part contains more complicated terms, luckily we do not need those
terms. With this we get

T̄ ᾱβ̄ = Λ(−v)ᾱα · Λ(−v)β̄β · T
αβ

= Λ(−v)ᾱ0 · Λ(−v)β̄0 · T 00
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1.7.2. Stress-energy-tensor

We identify the components of T̄αβ as

•T̄ 00 = γ2T 00 = γ2ρ = ρ̄ = energy density
•T̄ 0i = T̄ i0 = γ2viT 00 = ρ̄vi = energy flux in ei-direction

= (mγivi)(γnMCRF) = pin̄ = momentum density in ei-direction
•T̄ ij = γ2vivjT 00 = γ2vivjm · nMCRF

= (γmvi)(γnMCRF)vj = pin̄vj = pjn̄vi = j-momentum flux in ei-direction
= i-momentum flux in ej-direction

Gas
In the general case of gas, we always get a Tαβ, but it takes very different shapes,
depending on whether it is a gas with (without) internal (external) interactions or fields
(scalar or vector fields). We will fist look at the case of a gas of collisionless particles,
the case of collisions is discussed below in 1.7.2 We already know

T =
∑
p

m
1

VMCRF

~Up ⊗ ~Up

=
1

V

∑
p

mγ−1
p
~Up ⊗ ~Up =

1

V

∑
p

γ−1
p ~pp ⊗ ~Up

If we again look component by component:

T 00 =
1

V

∑
p

mγp = energy density

T 0i =
1

V

∑
p

mγ−1
p γpγpv

i
p =

1

V

∑
p

(γpmv
i
p) =

1

V

∑
p

pip = momentum density in ei-direction

= T i0 =
1

V

∑
p

Epv
i
p = energy flux in ei-direction

T ij =
1

V

∑
p

pipv
j
p = i-momentum flux in ej-direction

=
1

V

∑
p

pjpv
i
p = j-momentum flux in ei-direction

In component notation this gives us:

Tαβ =
1

V

∑
p

γ−1
p pαpu

β
p

=
1

V

∑
p

γ−1
p m−1pαpp

β
p

=
1

V

∑
p

(p0
p)
−1pαpp

β
p
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1.7.2. Stress-energy-tensor

We can no proceed to go to the continuous limit by using the density in phase-space

f =
#particles

(space volume)(momentum volume)
=

dN

d3x d3p

The stress-energy-tensor is then given as

T µν =

ˆ
d3p f · p

µpν

p0
. (1.7.2.1)

This is the very famous formula for the stress-energy-tensor of a collisionless gas in SRT.
(In fact, we will see that almost the same is true in GR).
Note, however, that the stress-energy tensor is a local quantity. Even if we defined it
in terms of a volume, we only look at the case, where V → 0, so at an infinitesimally
small region around a given point.

General case
Even though, in the most general case, the interpretation of Tαβ stays the same as above
we cannot find a rest frame, in which Tαβ becomes trivial. To prove this we look at a
gas of colliding particles:

1.

T 00 =

∑
p

√
m2
∑

i(p
i
p)

2

V

We see, that even if we define the MCRF to fulfil
∑

i p
i
p = 0, the kinetic energy

does not vanish in this frame. However it is minimal at this point.

2. T 0i vanishes in the MCRF for collision-free particles, but not in the general case.
We see in particular that T 0i vanishes in thermodynamic equilibrium but not if the
system is not in thermodyn. equilibrium (we define thermodynamic equilibrium
as a state, in which the particles interact on very short timescales).

3. T ij 6= 0 in MCRF, even in the collision-less case. In particular, in MCRF we can
identify T ij as 3× 3 stress-tensor, which describes the internal forces, which act
on the fluid. As an analogy, we consider a spherical balloon in which the particles
are located. With the force F = dp

dt
the balloon can

a) move due to bulk momentum

b) expand due to isotropic pressure

Theory of Relativity and Cosmology 27



1.7.2. Stress-energy-tensor

c) deform due to anisotropic pressure

d) rotate due to viscosity

These possibilities are encoded in the 6 degrees of freedom of the (symmetric) T ij
tensor.
In particular, we also see that only case b) is compatible with isotropy (we will
see that isotropy is often a condition we can assume in GR). In this case T ij is
diagonal in the MCRF (shown in ex. 03, task 2) and we get

T ij = pδij

Note: In the following I will use p as symbol for the pressure to avoid confusion
with the momentum.

Perfect fluid
In the case of a perfect fluid, there are strong interactions between the particles. This
leads to the following effects:

1. Thermodynamic equilibrium at any time ⇒ no heat conduction

⇒ T 0i = T i0 = 0

in local MCRF

2. No viscosity ⇒ only isotropic pressure

⇒ T ij = pδij

(see above, shown in ex. 02, task 2).
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1.7.3. Conservation of the Stress-energy-Tensor

So the stress energy tensor is represented by

Tαβ =


ρMCRF 0 0 0

0 pMCRF 0 0
0 0 pMCRF 0
0 0 0 pMCRF


in MCRF.
Since the property perfect fluid should be frame-independent we need to construct Tαβ
in Terms of Lorentz-Tensors as we did with the T -Tensor in case of dust. The 4-vectors
we have at our deposal are

• uαuβ (bulk-velocity or center of mass velocity)

• ηαβ (metric tensor

In the MCRF UαUβ gives us just a 1 in the 00-component so our S-E-Tensor needs
to contain a term ρMCRFU

αUβ. In contrary the metric tensor gives us a −1 in the
00-component and 1 for the ii-components. Since pMCRF should cancel out in the 00-
component we see that Tαβ needs to be

Tαβ = (ρMCRF + pMCRF)UαUβ + pMCRFη
αβ (1.7.2.2)

Note: The same as we derived above for the perfect fluid also applies for a perfect solid2
and a non-ideal gas with isotropic, internal interaction.

1.7.3. Conservation of the Stress-energy-Tensor

We think of a small cube from which energy can enter and leave. We then have 6 faces
from which the energy can enter or leave. We express the energy gain of each face by
taking T 0i (x0 time, xi =center of each face) and taking the derivative (not derived here)

∂T 00

∂x0
= −∂T

01

∂x1
− ∂T 02

∂x2
− ∂T 03

∂x3

The same can also be done with pi instead of ρ which finally gives

∂Tα0

∂x0
+
∂Tα1

∂x1
+
∂Tα2

∂x2
+
∂Tα3

∂x3
= 0

We now introduce the convenient notation

(. . . ),β =
∂(. . . )

∂xβ

2Perfect solid in this context means isotropy and instantaneous thermodynamic equilibrium.
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1.7.3. Conservation of the Stress-energy-Tensor

With Einstein sum convention this gives

Tαβ,β = 0

which gives a very clear insight in the structure of the equation. Sometimes this is called
the covariant derivative and is sometimes written as ∇β.

The expression derived above only holds in the case that no external forces are ap-
plied on the system. In case of external interactions the stress energy tensor is not
conserved but we can summarize the external forces into Fα (actually this describes the
conservation of the conservation of the 4-Momentum flux):

Tαβ,β = Fα
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2. General Relativity

2.1. Introduction to curvature

General relativity fundamentally relies on the concepts of differential geometry. In this
field of mathematics, the curvature of manyfolds plays an important role. To explain
this concept we will look at to new concepts:

1. Manyfold: A “smooth” space, which at every point has a flat,tangent space. In
principle this simply means that our space has no “spikes”, where the gradient of
the space is not defined.

2. Curvature: The curvature of space essentially means the same as what we nor-
mally perceive as as curvature (an analogy would be the curvature of the 2D surface
of a 3D ball). But how do we determine curvature? There are two ways:

a) With extra dimensions:
If we introduce an extra dimension (in this case the 3rd Dimension to our 2D
ball-surface) we can simply write down the equation

∆x2 + ∆y2 + ∆z2 = R

and get the curvature. Here it is important to note that although we used
our three-dimensional intuition, the law itself is two dimensional (R is fixed).
This leads to the second method.

b) Without extra dimensions:

Here we need the definition of an (arbitrary but
regular1) basis {xi} and a law of infinitesimal
distances. For example on our sphere we can
introduce the coordinates (θ, ϕ)

(θ, ϕ)→ dR2 = R2(dθ2 + sin2 θ dϕ2)

= (dθ, dϕ)

(
R2 0
0 R2 sin2 θ

)(
dθ
dϕ

)

1Regular means, that no different points have the same coordinates or in mathematical notation:
p̄ 6= p⇔ xp̄ 6= xp



1.7.3. Conservation of the Stress-energy-Tensor

We then define the infinitesimal distance dl2 on
a flat Cartesian space (which exists for every
manyfold , since we postulated a flat tangent space around any point):

dl2 = (dx, dy)

(
1 0
0 1

)(
dx
dy

)
We thus get for the infinitesimal distance on the sphere

dl2 = dr2 + r2dθ2

= (dr, dθ)
(

1 0
0 r2

)(
dr
dθ

)
which leads to the general law of infinitesimal distances :

dl2 = dxigijdxj (2.1.0.1)

with the symmetric metric tensor gij
What ways do we have to measure curvature? We will briefly discuss four methods:

• Draw parallel lines (which are on an infinitesimal scale flat). On a flat space these
will stay parallel indefinitely, on a curved space they may cross

• Sum the angles of a triangle. Only on a flat space the sum of the angles of a
triangle is 180◦.

• Try to draw a sphere with angles of θ/2 between every line. In case of a flat space
the lines will meet, in case of curvature not.

• Parallel Transport a vector along a closed path. In case of a flat space the vector
should still point in the same direction after the transport, in case of curvature it
will be rotated.

2.2. Fundamental principles of General Relativity

The fundamental principle of GR is Galileo’s equivalence principle:

All gravitating-only2 bodies passing through a point xi with a velocity vi

follows a unique trajectory (which is independent of mass, charge, etc.)

This lead Einstein to the assumption that gravity is in fact not a “force” in the sense of all
other forces but rather a fundamental curvature of space(-time) and actually trajectories
are just straights on a curved space(-time) (geodesics). Why is this a curvature of
spacetime and not only of 3D space? Let us investigate both cases:

1. The curvature is the curvature of 3D-space:

2Gravitation is the only force acting on this body. This does not hold for electromagnetic, weak or
strong interactions, which depend on charge, colour,. . .
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1.7.3. Conservation of the Stress-energy-Tensor

If we look at the difference of throwing a ball in space
and on earth we would see that with the gravity of
earth the curvature of the trajectory is much larger
than without. This would imply that the curvature
of space would be around the order of cm or m. We
would observe this by the means which we discussed
earlier.

2. The curvature is the curvature of 4D-spacetime:

Then even if the object falls along a straight
line in 3D-space (e.g. vertical fall on earth)
we get a parabolic trajectory in spacetime.
The curvature of this spacetime though is
more realistic to what we can measure. This
becomes clear if we consider a 1m flight and
use natural units:

t = 1 s = 3 · 108 meters of time

which is tiny (the radius of curvature of the order of the distance between the
Earth and the moon) and corresponds more to our perception of the curvature of
space, which we perceive to be flat.

We furthermore check if one initial coordi-
nate and initial velocity results in a unique
trajectory. For that we do another plot, which
assumes that we throw an object at a given
event in a given direction but with different
initial velocities. We then see that different
vi give different initial tangent vectors
to worldlines, like we can see in the draw-
ing.

This means that ansatz 2. seems to fulfil the conditions we imposed. This finding
leads to a major problem:
Special Relativity is only valid in inertial frames and especially assumes the existence of
inertial frames. But if there is gravity at (almost) every point in space we cannot apply
SR. Luckily we can simply look at the system from the point of view of an observer at rest
in a free-falling frame in the gravitational field. This observer will feel no acceleration.
In the (local) free falling frame, the observer has no means of knowing, that he is in a
gravitational field. This leads to the Einstein equivalence principle:

Physics is the same in any free falling frame with gravity as in any
inertial frame without gravity.
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2.2.1. Gedankenexperiment: Gravitational Doppler effect

We can now write down the three basic principles of GR:

(α) Special relativity is locally valid in a free falling frame (This naturally incorporates
the postulates of SR)

(β) Spacetime is curved and free falling objects follow geodesics on this curved space

(γ) There is a relation between matter and curvature of space, which is called the
Einstein equation. (In fact this will describe the dynamics of spacetime and gravity
itself)

We will see that we can already solve problems of GR by applying only principle α.
To look at effects of GR we now have two possibilities:

1. We can investigate the motion of free falling frames:
Here we would need β and γ, which we have not sufficiently investigated. But if
the gravitational field is weak, we can take the Newtonian limit3

2. We can do an experiment in a free falling frame:
Here we do not need to consider the effect of curvature of space, but SR holds. If
the particle is slow in this frame we can take the limit towards classical mechanics.

1. strong grav. field weak grav. field
curvature,geodesics newtonian limit a = g

2. particles fast/c w.r.t free-falling frame particles slow w.r.t. free falling frame
SR Classical mechanics

This means, that we can look at the case of weak gravitational effects and fast particles
just by knowing the laws of SRT. In the following we will look at an example.

2.2.1. Gedankenexperiment: Gravitational Doppler effect

The gedankenexperiment goes as follows:
We have a tower of height h, which is equipped with two ideal detectors.

3This needs to hold due to the consistency of nonrelativistic limits with classical mechanics.
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2.2.1. Gedankenexperiment: Gravitational Doppler effect

• Event E1: at t1, detector A drops a particle of mass m.

• Event E2: At t2, detector B collects this particle and transfers its energy to a
photon, which is emitted upwards.

• Event E3: At t3, detector A collects the photon and transfers all its energy to a
particle of mass m and drops is

and so on . . .
Without GR we would not assume any impact of gravity on light but Einstein’s intuition
was, that the upward photon must lose energy on its way upwards, to avoid
perpetual motion (since the particle with mass gains energy by dropping).
The guess is, that the massive particle leaves at E1 with

E(E1) = m .

It reaches E2 with

E(E2) =
√
m2 + p2

Since the gain in velocity is very small (∆v = g∆t) with h = g∆t2

2
, so

∆v =
√

2gh ∼ 10 ms−1 � c .

Therefore we can do a Taylor-expansion of the energy and get:

E(E2) ≈ m+
1

2
mv2 = m(1 + gh)

(
+O

(v
c

)4
)

If we assume no Doppler shift the photon would be emitted with E(E2) = m(1 + gh) but
since we need energy to be conserved the shift in energy for the photon needs to be

E(E3)

E(E2)
=

m

m(1 + gh)
=

1

1 + gh
≈ 1− gh

In fact this effect was experimentally confirmed by Pound & Rebka (1960) and Pound
& Snider (1965), which is astonishing, since the effect is only of the order

E(E3)

E(E2)
=
ν3

ν2

SI-units
= 1− gh

c2
,

gh

c2
∼ 10−14

Now we want to calculate the Doppler shift only using principle α:
We consider two free falling frames, which are both falling vertically with the acceleration
g:

• O momentarily at rest with detector B at t2, i.e. with E2
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2.3.1. Generalization of Special relativity

• Ō momentarily at rest with detector A at t3, i.e. with E3

Since both frames have the same acceleration they move with a constant relative velocity
and are inertial frames. We know that at t3, Ō is at rest, while O is falling at

vŌ/O = g∆t = g(t3 − t2) = g
h

c
nat.units

= g · h

If we now use our Doppler formula from SR (see 1.6.8) we get (since O is at rest with
the light pulse and if Ō looks in direction of O it is moving away from him)

E(Ō)

E(O)
=
ν̄

ν
=

√
1− vŌ/O
1 + vŌ/O

< 1

The energy of the massive particle in O is

E(O) = EE2 = m(1 + gh)

since the detector B was defined in O at t2.
We thus get √

1− vŌ/O
1 + vŌ/O

≈ 1− vŌ/O ≈ 1− gh (+O(v4))

This confirms our guess! In particular we see, that the gravitational Doppler effect
follows from the Doppler effect in SRT.

Note: Since at the beginning we assumed, that the gravitational field, in which we
are is weak, this equation only holds in this limit. If we want to consider stronger
gravitational fields we need to know the curvature of space and will get corrections of
higher orders.

2.3. Metric tensor in spacetime

2.3.1. Generalization of Special relativity

In SR we have defined ds2 as

ds2 = dxµηµνdxν

with

• dxµ, dxν are contravariant

• ηµν is 2-covariant and two coordinate systems are connected by the Lorentz-
transformation:

∂xµ

∂x̄µ̄
ηµν

∂xν

∂x̄ν̄
= ηµ̄ν̄
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2.3.2. Mathematical formulation

• xµ are physical, inertial coordinates

In GR we want to define ds2 in a similar way with

ds2 = dxµ gµν dxν

Here we find, that

• The metric tensor gµν is 2-covariant and encodes the curvature of spacetime

• xµ are not necessarily physical coordinates, they only need to be “valid coordi-
nates”4

• The coordinate transformation needs to be a bijection between events and coordi-
nates and it must be invertible

• At any point in curved spacetime we need a manifold, which has a tangent space-
time, whereas we demand, that tangent spacetimes represent the inertial frames
of SR.

2.3.2. Mathematical formulation

In any event E with coordinates xαE, there exists at least one transformation
such that the metric transforms as

gµν(x
α) 7→ ḡµν(x̄

α) = nµν +O
(
(x̄α − x̄∗α)2

)
(2.3.2.1)

whereas ηµν is the metric of the tangent, flat spacetime. We call this
frame Local, physical inertial frame (LPIF)

The O ((x̄α − x̄∗α)2) is important, since this is the higher order correction to the tangent
space, and correspondingly ηµν .
Hence we can neglect the O ((x̄α − x̄∗α)2) in a small region around (x̄α − x̄∗α) and
everything looks like flat spacetime and the laws of SR hold. This means, that around
x̄∗α, the coordinates x̄α are local physical and inertial coordinates5 of a LPIF6 and
GR automatically implies, that

SR is an approximation of GR in a flat spacetime, which is a local tangent
to curved spacetime.

4Coordinates, which satisfy the conditions, which we will demand in the following
5Inertial: The metric is the metric of flat spacetime, i.e. has the right signature and is similar to
ηµν
Physical: The metric is normed, such that x0 is the physical time of a clock at rest and

√∑
(dxi)2

is the distance of an object at rest.
6This frame experiences no gravity effects.
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2.3.2. Mathematical formulation

In curved spacetime we can generalize our findings from the curvature of euclidean space
(see 2.1), which we expressed in formula (2.1.0.1) and get

ds2 = dxµgµνdxν (2.3.2.2)

whereas gµν is the symmetric tensor of spacetime and the generalization of the Minkowski-
tensor ηµν for curved spacetime. From this we see the following properties of curved
spacetime:

• ds2 is invariant, just as in SR

• dxµ transforms like a vector:

dx̄µ̄ =
∂x̄µ̄

∂xµ

whereas ∂x̄µ̄

∂xµ
is a 4× 4 tensor.

• Therefore gµν transforms like a 2-covariant tensor:

ḡµ̄ν̄ =
∂xµ

∂x̄µ̄
∂xν

∂x̄ν̄
gµν

In particular this means, that gµν transforms just like ηµν , which will be shown in
ex. 4, task 2

• Since we have to be able to change back an fourth between coordinates, the trans-
formation cannot be singular. This means, that the determinant of the jacobian
cannot vanish (for a proof see [8]):

det

(
∂xµ

∂x̄µ̄

)
6= 0

Furthermore this inverse, which transforms back needs to fulfil

gµαgαν = δµν

• gµν now plays the role of the index-lowering tensor

vµgµν = vν

which switches a vector for a covector. In particular this means, that we can also
find a transformation between gµν and gµν7

gµνg
ναgαν = gαµg

αν = δαµg
αν = gµν

(since g and δ are symmetric, we have no need to write g ν
µ or δ α

µ . In the future
we will stick to this notation.)

7This is a very awkward notation which was chosen only to clarify the role of g. In the future we
will just write such transformations as gαβ = gµνg

µαgνβ where we can just use Einstein’s sum
convention.
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2.4.1. Change from curved to flat spacetime

• The coordinate transformation, which links gµν to ḡµν = ηµν is not unique! This
can easily be shown if we look at three coordinate systems in a local, flat tangent
space around x∗:

– Original coordinates: {xµ} : gµν(x
∗µ) 6= ηµν

– First possible transformation: {x̄µ} : ḡµν(x̄
∗µ) = ηµν

– Second possible transformation: {¯̄xµ} : ¯̄gµν(¯̄x∗µ) = ηµν

If we then consider the transformation, which links x̄ and ¯̄x

¯̄g ¯̄µ¯̄ν =
∂x̄µ̄

∂ ¯̄x ¯̄µ

∂x̄ν̄

∂ ¯̄x¯̄ν
ḡµ̄ν̄

by plugging in the definition from above we see that

η ¯̄µ¯̄ν =
∂x̄µ̄

∂ ¯̄x ¯̄µ

∣∣∣∣
x∗

∂x̄ν̄

∂ ¯̄x¯̄ν

∣∣∣∣
x∗
ηµ̄ν̄

this means, that ∂x̄µ̄

∂ ¯̄x ¯̄µ must be the inverse of the Lorentz-transformation Λ
¯̄µ
µ̄,

since this is (by definition) the most general transformation, which preserves ηµν .
So (locally) all possible solutions to the equation above are linked by Lorentz-
transformations.

2.4. Physical consequences of curved spacetime

2.4.1. Change from curved to flat spacetime

We will look at an event E and two distinguishable particles, whose worldlines go through
E. Then we can always find an inertial frame, such that one of the two particles is at
rest (i.e. ḡµν = ηµν +O(x̄α − x̄αE), ē0 is a tangent to the worldline and ēi is orthogonal
to the worldline).
Then this frame is (modulo spacial rotations) uniquely defined by a transformation dis-
cussed above. The second particle passing through E then has a different inertial frame,
which is related to the frame of particle 1 by a Lorentz-Boost.

In fact we will solve many problems of GR by doing these steps:

• Start with a LPIF around the event of the emitter and characterize the physics
with SR

• Use the laws of GR to compute the worldline in curved spacetime

• find a LPIF around the observer and again use SR to compute what the observer
sees.

This means, that we can always define the properties of an object in a local physical
inertial frame and then generalize this by a change of coordinates (similar to the
MCRF in SR).
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2.4.2. Length-elements

2.4.2. Length-elements

What is the meaning of ds2 in GR?
Like in SR it can represent an absolute measure of time or space but not both at the
same time! We will look at the sign of ds2 to make this clear:

1. ds2 = 0:

If the events are closeby we can use eq. (2.3.2.2)
and directly see that ds2 = (xµB−x

µ
A)gµν(x

ν
B−

xνA) = 0, which means that the two events are
on the worldline of light.

2. ds2(A,B) < 0 (for A, B close together):
Then

√
−ds2 is the interval of proper time

between A and B.
This holds due to principle (α): In an MCRF
of A and B we get

ds2 = −(dx0)2 = −(dt)2 (see 1.6.1)

This can (obviously) be generalized to

ds2 = dxµηµνdxν

in an arbitrary (flat) frame. We then use principle (α) and the fact, that ds2 is
frame invariant to find the proper time between A and B in GR:

dt=
√
−dxµηµνdxν︸ ︷︷ ︸
flat space

⇒ dt =
√
−dxµgµνdxν︸ ︷︷ ︸

curved space

(2.4.2.1)

In the special case of a frame which is locally at rest this becomes

dt =
√
−dx0g00dx0

and if additionally g00 = −1 (gµν = ηµν)

dt =
√

(dx0)2

which is the limit we wanted.
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2.4.3. Volume-elements

3. ds2 > 0:
Then we call

√
ds2 the proper distance between A and B. The reasoning goes as

above:
If ds2 is spacelike we can find frames where A and B are simultaneous and find,
that

ds2 =
∑
i

(dxi)2 = dxµηµνdxν︸ ︷︷ ︸
arbitrary flat frame

=: dl2

and we can call dl2 proper distance (or proper length).
In GR we then get:

dl =
√

dxµgµνdxν (2.4.2.2)

If gµν = ηµν we (obviously) get the limit from above, so our definition is consistent.

2.4.3. Volume-elements

We can follow the same logic to define a proper volume:
Since in GR the spacetime-volume element d4x = d0xd1xd2xd3x is coordinate depen-
dent. We therefore want to find a frame-invariant definition of a volume element, which
we call proper volume dV .

To find this we go to a LPIF {x̄α}, and define our proper volume in this frame:

dV = dx̄0̄dx̄1̄dx̄2̄dx̄3̄

As we know from the differential geometry if we change coordinates dV transforms like

dV = dx̄0̄dx̄1̄dx̄2̄dx̄3̄ = det

(
∂x̄µ̄

∂xµ

)
dx0dx1dx2dx3

whereas ∂xµ

∂x̄µ̄
is the Jacobian of the transformation xµ 7→ x̄µ̄.

But since {x̄α} is locally inertial its metric is just ηµν , which means that we can express
the jacobian in terms of the Minkowski-metric:

gµν =
∂x̄µ̄

∂xµ
∂x̄ν̄

∂xν
ηµ̄ν̄

When we take the determinant we get:

g ≡ det(gµν) = det

(
∂x̄µ̄

∂xµ

)
det

(
∂x̄ν̄

∂xν

)
︸ ︷︷ ︸

=det( ∂x̄
µ̄

∂xµ )
2

det(ηµ̄ν̄)︸ ︷︷ ︸
=−1
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2.4.4. Scalar product of basis vectors

which means that the jacobian is simply given by

det

(
∂x̄µ̄

∂xµ

)
= Jacobian(xµ 7→ x̄µ̄) =

√
−g

which gives us the final (very important) formula

dV =
√
−g dx0dx1dx2dx3 (2.4.3.1)

So if we want to do an integral over spacetime in GR we getˆ
dx0dx1dx2dx3 ·

√
−g {density, e.g. L}

2.4.4. Scalar product of basis vectors

If we take the scalar product of two basis vectors of coordinates eµα = δµα we get:

~eα · ~eβ = δµαδ
ν
βgµν = gαβ (2.4.4.1)

which gives us a very handy way of computing the components of gµν in any given
coordinate system:

∀xα : gµν = ~eµ(xα) · ~eν(xα) (2.4.4.2)

Of course if we look at locally inertial and physical coordinates {xαE} around {xα} the
unit vectors are invariant (up to O(xα − xαE)2), which we can write as

gµν(x
α) = ηµν +O

(
(xα − xαE)2

)
⇒ ~eµ(xα) = ~eµ(xαE) +O

(
(xα − xαE)2

)
Then we have the following equivalences:

⇔ ~eµ is locally invariant up to order 2 terms

⇔ ∂~eµ
∂xβ

(xα) = 0 +O
(
(xα − xαE)2

)
⇔ ∂~eµ

∂xβ
(xEα ) = 0

2.5. Covariant derivatives

We want to generalize the definition of the covariant derivative from 1.7.3 to curved
manyfolds.
While one could naively assume that nothing changes except the metric, the expressions
become much more complicated due to the fact, that for a vector field V α we need
to not only take the derivative of the V α with respect to different coordinates but
also transform the basis vector(s) accordingly. For this new derivative we use the
notation

∂~V

∂xβ
= V γ

;β ~eγ

As we see, now we have a new basis ~eγ, which we will need to find in the following. To
do this we look at different cases:
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2.5.1. Scalar functions

2.5.1. Scalar functions

In case of a scalar function φ(xα) we obtain the same as in SR (since scalars are inde-
pendent of coordinate system):

φ;α = φ,α =
∂φ

∂xα
(2.5.1.1)

Therefore the total differential of course stays the same as well:

dφ = φ,α dxα(+O(dxα)2)

2.5.2. Vector field

A vectorfield has a basis and thus ~V (xα) = V µ(xα)~eµ(xα). Then the total differential
consists of the two terms:

d~V =
∂~V

∂xβ
dxβ =

∂

∂xβ
(V µ~eµ) dxβ

=

(
~eµ
∂V µ

∂xβ
+ V µ ∂~eµ

∂xβ

)
dxβ

We see that we now have two terms, which are (at least explicitly) not in the same
basis. But since ∂~eµ

∂xβ
is a 4-vector in must have coordinates in the ~eµ-Basis, which we

will call Christoffel symbols Γγµβ:

∂~eµ
∂xβ
≡ Γγµβ~eγ (2.5.2.1)

They are symmetric (as shown in ex.5, task 2). With this definition we can factor ~eγ
out of our differential and get

d~V =

(
∂V µ

∂xβ
~eµ + V µΓγµβ~eγ

)
dxβ

=

(
∂V γ

∂xβ
~eγ + V αΓγαβ~eγ

)
dxβ

=

(
∂V γ

∂xβ
+ V αΓγαβ

)
︸ ︷︷ ︸

≡V γ;β

~eγ dxβ

(in the second step we renamed dummy indices to avoid confusion).
We see that V γ

;β is the γ-coordinate of the derivative of ~V with respect to xβ.
Our total differential then becomes

d~V = V α
;β ~eα dxβ
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2.5.3. Covector field

Since d~V is an absolute geometrical quantity, ~eα and dxβ is a Lorentz-vector coordinate
so logically (and by construction) V α

;β is a true
(

1
1

)
Lorentz-tensor which accordingly

transforms like

V̄ ᾱ
;β̄ = Λᾱ

α(Λ−1)β̄βV
α
;β

This is why we call it a covariant derivative:

V α
;β︸︷︷︸

(1
1)-tensor

= V α
,β︸︷︷︸

Non-Lorentz

(1
1)-tensor!

+ Γαγβ︸︷︷︸
Non-Lorentz

(1
2)-tensor!

V γ︸︷︷︸
(1

0)-tensor

(2.5.2.2)

Since Γαγβ is not a Lorentz-vector we will never raise or lower its indices and thus our
notation of writing upper and lower indices on top of each other is justified.

2.5.3. Covector field

In case of a covector field we use the results from above and use the invariance of scalar
products in different coordinate systems. With arbitrary Cα(xβ) and V α(xβ) we then
do

φ(xβ) = Cα(xβ)V α(xβ) ⇒ φ,γ = Cα,γV
α + CαV

α
,γ

= Cα,γV
α + Cα(V α

;γ − ΓαδγV
δ)

And by renaming the dummy index in the first term Cα,γV
α = Cδ,γV

δ and factoring out
V δ we get

· · · = (Cδ,γ − ΓαδγCα)V δ + CαV
α

;γ

Since the right term is the covector-field with the covariant derivative of the vector
field we identify the left term in the brackets as the covariant derivative of Cδ with
respect to xγ:

Cδ;γ ≡ Cδ,γ − ΓαδγCα (2.5.3.1)

This derivative is a
(

0
2

)
tensor.

2.5.4. General fields of arbitrary rank

In the case of a general tensor of any rank, we can just use what we found above while
paying attention to the right usage of vectors and covectors. e.g.

T µν;α = T µγ,α + T µγΓνγα + T γνΓµγα

Tµν;α = Tµν,α − TµγΓγνα − TγνΓγµα
T µν;α = T µν,α + T γν Γµγα − T µγ Γγνα
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2.5.5. Relation between the metric and Christoffel symbols

Since the metric describes the nature of spacetime itself and we can always find a
tangent space where gµν = ηµν we express the Christoffel symbols in terms of the metric
tensor:

gµν(x
α) = ηµν +O((xα − xαE)2) ⇒ ⇒ ∂~eµ

∂xβ
(xαE) = 0

Which directly implies that

Γνµβ(xαE) = 0⇒ (. . . );β = (. . . ),β

Since this holds in a LPIF and gµν,α is a valid
(

0
3

)
-tensor it “normally” transforms with

Λ and thus in any frame we get

gµ̄ν̄;ᾱ = Λµ
µ̄Λν

ν̄Λ
α
ᾱgµν;α = 0

Since we can show this in any arbitrary point since in every point we can find a LPIF
for every point this holds on our whole manyfold. The same argumentation can be done
for the contravariant gµν and we obtain the very handy result that

gµν;α = gµν;α = 0 in any point (2.5.5.1)

From this we get the formula (will be shown in ex.5, task 2):

Γαµν =
1

2
gαβ(gµβ,ν + gβν,µ − gµν,β) (2.5.5.2)

2.6. Geodesics

2.6.1. Equation of geodesics

We already know that the worldline of an object describes its trajectory in spacetime,
whereas massless particles follow a light-like (ds2 = 0), and massive particles a time-like
(ds2 < 0) curve.
This worldline is an absolute geometrical quantity, but in a given coordinate system it
is a function of its coordinates xα. Since the worldline is a line, we can represent the
functional dependence of its coordinates with a single parameter, which we will call λ, so
xα = xα(λ). We can then define a (local) tangent vector to the worldline around (x∗β):

~T =
dxα(λ)

dλ

∣∣∣∣
λ∗
~eα(x∗β)

and different choices of λ give us different ~T , which are colinear to each other in x∗β.

Theory of Relativity and Cosmology 45



2.6.1. Equation of geodesics

Special case: λ = t
If we chose λ to be the proper time, we simply get back the 4-velocity which is clear if
we take the scalar product:

~T · ~T = TαgαβT
β =

dxα

dt
gαβ

dxβ

dt

(1.6.2.1)
=

ds2

dt2
= −1

We can therefore identify ~T as the 4-velocity along the worldline:

~U =
dxα(t)

dt

∣∣∣∣
t∗
~eα(xβ(t∗)) for λ = t (2.6.1.1)

General case
We now want to find an equation describing the worldline in the general case. This
evolution of the world line is what we call geodesic. We define it to be a locally flat
line, i.e.

d~T

dλ
= lim

dλ→0

~T (λ+ dλ)− ~T (λ)

dλ
= 0

so

0 =
d

dλ

(
dxα

dλ
~eα

)
=

d2xα

dλ2
~eα +

dxµ

dλ

d~eµ
dλ

=
d2xα

dλ2
~eα +

dxµ

dλ

(
∂~eµ
∂xν

dxν

dλ

)
(2.5.2.1)

=
d2xα

dλ2
~eα +

dxµ

dλ

(
Γαµν~eα

) dxν

dλ

And by factoring out ~eα and renaming the dummy indices to the ones mostly used in
literature we get the very important equation of geodesics

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (2.6.1.2)

We now want to look at the implications of this equation:

• The same geodesics can be described in any coordinate system and in each coor-
dinate system by any choice of curvilinear8 basis:
– In the general case λ 7→ f(λ) gives us a different equation and thus also a

different solution.
– Any transformation, which is of the form

λ 7→ aλ+ b

leaves the shape of the equation and xµ(λ) invariant (since this is a second
order differential equation).

8curvilinear is just the fancy word for a curved coordinate system in a euclidian space (e.g. spherical
coordinates)
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• The fact that it is a second order DGL also im-
plies, that we need two initial conditions, which
are 1 event and 1 direction.
This means that for every initial coordinate and
velocity we get one unique geodesic (which is
what we would expect from our intuition since
trajectories need to be unique).

• On a geodesic, any segment [A,B] gives the shortest path between A and B9.
In particular this implies, that geodesics are the generalization of straight lines to
curved manyfolds.

Alternative derivation using variation
While the derivation above may be the most intuitive approach if we want to derive
geodesics from the tangent space known from SR, if we assume geodesics to be the
generalization of straight lines we can also derive the equation of geodesics from the
principle of variation:
Hence we want to use the variation of

√
ds2 between two points:

dl =
√
ds2 =

√
gαβdxαdxβ

The 4-length (which we can choose as the proper time t in an an appropriate frame
but we will stick to l for an intuitive understanding) of the geodesic then becomes the
integral of

√
ds2 from A to B. We can then parametrize xα = xα(λ) with λ ∈ [0, 1] and

get:

lAB =

ˆ B

A

√
gαβdxα dxβ =

ˆ 1

0

√
gαβ

dxα

dλ

dxβ

dλ
dλ

We call the term in the integral the Lagrangian√
gαβ

dxα

dλ

dxβ

dλ
= L

(
λ, xγ(λ),

dxγ(λ)

dλ

)
= L(λ, xγ(λ), ẋγ(λ))

and see that
dl

dλ
= L (2.6.1.3)

If we now use variation theory δl = 0 we get the Euler-Lagrange equation, that we know
from classical mechanics (derived in [1] and [2]):

d

dλ

∂L

∂ẋγ
=

dL

dxγ

We now carefully compute every term:
9This is not the entire truth:
If we look at a compact space, there are always two directions, which we can take to on a geodesic
to go from A to B. Think for example of the sphere from 2.1, where we have two ways to move on
a geodesic from A to B. Luckily all measurements imply that our universe is not compact.
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2.6.1. Equation of geodesics

1.

dL

dxγ
=

1

2L

∂gαβ
∂xγ

dxα

dλ

dxβ

dλ
+

1

2L
gαβ

 ∂2xα

∂xγ∂λ︸ ︷︷ ︸
=0

dxβ

dλ
+

∂2xβ

∂xγ∂λ︸ ︷︷ ︸
=0

dxα

dλ


(2.6.1.3)

=
L

2

∂gαβ
∂xγ

dxα

dl

dxβ

dl

2.

∂L

∂ẋγ
=

1

2L
gαβ

(
dxα

dλ
δβγ +

dxβ

dλ
δαγ

)
= 2

1

2L
gαγ

dxα

dλ
=

1

L
gαγ

dxα

dλ

where we used the symmetry of gαβ and renamed dummy indices.

3.

d

dλ

(
∂L

∂ẋγ

)
=

dl

dλ

∂

∂l

(
1

L
gαγ

∂xα

∂l

dl

dλ

)
= L

∂

∂l

(
gαγ

∂xα

∂l

)
= L

(
gαγ

d2xα

dl2
+
∂gαγ
∂xβ

dxβ

dl

dxα

dl

)
= L

(
gαγ

d2xα

dl2
+

1

2

(
∂gαγ
∂xβ

+
∂gβγ
∂xα

)
dxβ

dl

dxα

dl

)
In the last step we have again renamed dummy indices.

Altogether this gives us

0 =
d

dλ

∂L

∂ẋγ
− dL

dxγ

= gαγ
d2xα

dl2
+

1

2

(
∂gαγ
∂xβ

+
∂gβγ
∂xα

− ∂gαβ
∂xγ

)
︸ ︷︷ ︸

(2.5.5.2)
= gαγΓγαβ

dxβ

dl

dxα

dl

which (after renaming indices) altogether gives us the same equation of geodesics10

d2xγ

dl2
+ Γγαβ

dxβ

dl

dxα

dl
= 0

10Note that the equation contains l instead of λ. We can generalize this equation to λ by reversing the
transformation we did in the beginning.
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Covectors
We have only looked at the equation of geodesics for vectors so far. Interestingly it turns
out that the equation has a much simpler form if we use covectors instead. It is simply
(will be shown in ex.6, task 3):

d2xα
dλ2

=
1

2
gµν,α

dxµ

dλ

dxν

dλ
(2.6.1.4)

or in terms of the momentum

m
dpα
dt

=
1

2
gµν,αp

µpν

2.6.2. Consequences of geodesics as worldlines

Massive particles
If we look at massive particles m 6= 0 with momentum pµ our worldline is time-like and
we can use what we derived above for λ = t. Then

pµ = mUµ = m
dxµ

dt

which, if we plug it into equation (2.6.1.2) gives us the equation of momentum
conservation

m
dpµ

dt
+ Γµαβp

αpβ = 0 (2.6.2.1)

Massless particles
Although we cannot just use proper time in the case of massless particles we can find a
λ, so that p0 = dx0

dλ
is the energy of the particle. The reasoning then goes analogous to

above and we obtain

dpµ

dλ
+ Γµαβp

αpβ = 0 (2.6.2.2)

Physical interpretation

• Local tangent spacetime:
From the formulae above we can extract a deeper physical understanding of the
concept of inertial frames. In fact we have shown that

gµν = ηµν +O((δxα)2) ⇔ being in an inertial/free falling frame.

Theory of Relativity and Cosmology 49



2.6.2. Consequences of geodesics as worldlines

Indeed, if we use (2.6.2.1) and (2.3.2.1) we get that

gµν = ηµν +O((δxα)2)

⇒ Γµαβ = 0

⇒ dpµ

dt
= 0

⇒ pµ conserved (locally)

Which means, that objects move in straight lines. This implies that locally

– All geodesics are straight up to O(∆t3):

xα = Aα +Bα(t− t∗) +O((t− t∗)3)

⇒ All velocities are constant: Uα = Bα +O((t− t∗)2)

⇒ All accelerations vanish: aα = 0 +O((t− t∗))
which is just what we would expect from an inertial frame, which sees no effects
from gravity.

• General spacetime:
In general, the simple formulae we derived above do not hold and we get a nonlinear
curvature of spacetime. This implies, that also velocities and accelerations vary.
This is how gravity manifests itself! The deeper knowledge, that we can pull from
this is that unlike all other forces, which we can quantify in the stress energy tensor
(see 1.7.2) but which is not a part of spacetime itself11, the curvature of space itself
generates the effect, which we observe from gravity.

• Presence of a force:
In the presence of a force (other than gravity) the equation of momentum conser-
vation must be modified to include the 4-force and has the form

dpµ

dt
+

1

m
Γµαβp

αpβ = F µ 6= 0

Summary

We now know how to compute the path of a test particle in a given metric, which
corresponds to a given gravitational field. What we do not know is how to compute the
dynamics of massive particles (which change the metric while they move) in spacetime.
The connection between mass and curvature will be given by the Einstein equation,
which we will derive later but to do so we first need a more mathematical chapter on
the curvature of spacetime.

11We especially see this in the fact, that for any frame we can find a LPIF, so that gµν = ηµν but it is
not possible to find a specific structure of Tµν in an arbitrary frame.
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2.7. Curvature of spacetime

We know from the previous chapters:

• gµν encodes all properties of the spacetime but does not explicitly imply whether
the manyfold is curved or not12.

• The curvature of spacetime is encoded in the second derivative f(x) → f ′′(x)
of the coordinates (which we would intuitively assume from analysis)

• The second derivative of gµν is not a single number, which means that several
numbers characterize the curvature of space

• Γγµν only contains first derivatives and thus does not show curvature explicitly.

2.7.1. The Riemann-Tensor

We remind ourselves of the methods we presented in
2.1 to test curvature of space. We need to chose one
method and find a mathematical formulation for this
test. We choose parallel transport.
We can formulate the concept of parallel transport math-
ematically as

lim
dλ→0

~V (λ+ dλ)− ~V (λ)

dλ
= ~0 everywhere.

This means that

d~V 6= ~0 ⇔ spacetime is curved

We now want to compute the components δV α of d~V . we simply rewrite

~V = V α~eα(xγ) ~V + d~V = (V α + δV α)~eα(xγ)

Since we look at small changes, d~V should be linear in ~V , so

δV α = (. . . )αβV
β

12Think for example of curvilinear (“soft” coordinates.)
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Furthermore we see that (. . . )αβ should depend on
the path. Take for example a small parallelogram,
which is generated by two small vectors d~xA, d~xB (see
picture). For small dxµA, dxνB we get only linear terms
and finally obtain

δV α = (. . . )αβµνdx
ν
Adx

µ
BV

β

This tensor has the following properties:

• It is a valid Lorentz-tensor of rank
(

1
3

)
(the argument is like always: DxµA, dx

ν
B, V

β)
are all valid Lorentz-vectors so (. . . )αβµν needs to be a valid Lorentz-tensor

• If fully describes the curvature in a given event

We call this tensor the Riemann Tensor Rα
βµν(x

γ).

We can relate Rα
βµν to Γαµν and thus to the metric. We will do a brief derivation of

the connection by using thinking about the parallelogram from above:

• We know that on each of the four sides d~V
dλ

= 0 (by construction of the parallel
transport), which means that

⇒ d~V

dλ
= V α

,µ

dxµ

dλ
~eα = ~0

⇒ V α
;µ = 0 ⇒ V α

,µ = −ΓαµβV
β

• We then write down the coordinate difference between the initial and final vector
in the point xγ after going around the parallelogram:

δV α = V α
,ν dx

ν
A︸ ︷︷ ︸

in M1

+V α
,µ dx

µ
B︸ ︷︷ ︸

in M2

−V α
,ν dx

ν
A︸ ︷︷ ︸

in M3

−V α
,µ dx

µ
B︸ ︷︷ ︸

in M4

(We evaluate the derivatives in the middle of the sides of the parallelogram). We
then rewrite the derivatives in terms of the Christoffel symbols and get:

δV α = −Γανβdx
ν
AV

β︸ ︷︷ ︸
in M1

−Γαµβdx
µ
BV

β︸ ︷︷ ︸
in M2

+ Γανβdx
ν
AV

β︸ ︷︷ ︸
in M3

+ Γαµβdx
µ
BV

β︸ ︷︷ ︸
in M4

• We rearrange the terms, so that M1 and M3 are together as well as M2 and M4:

· · · =

ΓανβV
β︸ ︷︷ ︸

in M3

−ΓανβV
β︸ ︷︷ ︸

in M1

 dxνA +

ΓαµβV
β︸ ︷︷ ︸

in M4

−ΓαµβV
β︸ ︷︷ ︸

in M2

 dxµB
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and since dxµB describes the coordinates of
−−−−→
M1M3 and −dxνA describes the coordi-

nates of
−−−−→
M2M4 (becomes clear from the way we go through the parallelogram) we

can rewrite this to

=

[
∂

∂xµ
(
ΓανβV

β
)]

dxµBdx
ν
A −

[
∂

∂xν
(
ΓαµβV

β
)]

dxνAdx
µ
B

=
[
Γανβ,µV

β + ΓανβV
β
,µ

]
dxµBdx

ν
A +

[
Γαµβ,νV

β − ΓαµβV
β
,ν

]
dxµBdx

ν
A

=
[
Γανβ,µV

β − ΓανβΓβµσV
σ
]
dxµBdx

ν
A −

[
Γαµβ,νV

β − ΓαµβΓβνσV
σ
]
dxµBdx

ν
A

=
[
Γαβν,µ − ΓανσΓσµβ − Γαµβ,ν + ΓαµσΓσνβ

]︸ ︷︷ ︸
≡Rαβµν

dxµBdx
ν
AV

β

Which means, that the explicit representation of the Riemann tensor is given by

Rα
βµν = Γαβν,µ − Γαβµ,ν + ΓασµΓσνβ − ΓασνΓ

σ
µβ (2.7.1.1)

Since the Christoffel symbols depend on the first derivative of gµν , Rα
βµν has to depend

on the second derivative of the metric. The relation to gµν though is not trivial.

The only particular case, in which we can easily see an explicit form of the Riemann
tensor is for the LPIF, in which

gµν = ηµν +O(δx2) ⇒ Γαµν = 0

⇒ Rα
βµν =

1

2
gασ (gσν,βµ − gσµ,βν + gβµ,σν − gβν,σµ)

Note: This result might at first seem counter intuitive, since the LPIF is defined as
locally flat tangent metric. It is important though to remind ourselves, that the flatness
exclusively applies to the tangent space but not to space itself. From our findings we
can extract the following properties of Rα

βµν :
• From our geometrical construction directly follows, that Rα

βµν = 0 in flat space-
time (even in complicated coordinates)

• Since the
(

1
3

)
Riemann-tensor is a proper Lorentz tensor we can lower one index (or

raise/lower any number of indices for that matter) and can define the
(

0
4

)
Riemann

tensor:

Rα
βµν = gαδRδβµν

• Since R is a 4 × 4-tensor it has 44 = 256 components! This is a lot but luckily
we do not need to calculate this many components, since only 20 of them are
independent. This follows from symmetry considerations

Rαβ µν = −Rβα µν
= −Rαβ νµ = +Rµν αβ

and from the first Bianchi identity (for proof see A.1):

Rα
[βµν] := Rα

βµν +Rα
µνβ +Rα

νβµ = 0

For a full proof see A.2
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2.8. The Einstein equation

With the Riemann tensor we now have a mean to measure the curvature of spacetime
and know how to relate this curvature to the metric. We furthermore know, that matter
generates curvature. But what is the relation between matter and curvature?

curvature ?⇔ matter

We know:

• Our theory can only involve valid Lorentz scalars/vectors/tensors.

• In the limit of small masses (small energies) we have to get back our Newtonian
theory with

ma = m∇φ ⇒ ~a = ∇φ︸ ︷︷ ︸
geodesic

Thus we know that the Einstein equation must have the Poisson equation as
newtonian limit:

∆φ = 4πGρm

with the gravitational potential φ and the mass density ρm.

We will derive the Einstein equation by argumenting. We do this in steps:

2.8.1. Requirements to a covariant relation between curvature
and matter

We know from SR, that the energy density ρ, which is the T 00-component of the stress-
energy tensor (see 1.7.2) becomes the mass density in the limit of small velocities13:

ρ = T 00 v�c→ ρm

Furthermore we know, that the curvature must depend on some form of second order
differentiation, so that we get the shape of the Poisson equation14

(curvature)µν = (. . . )T µν = (gµν),?? = (. . . )T µν

Now what can be the left hand side? We need the curvature to have two indices, it
needs to depend on the curvature of spacetime and it needs to contain a second order
derivative.
We look at the variables, which we have introduced in the last chapters and see, that
we have
13E2 = p2 +m2 p→0→ m2

14We need the form of the Poisson equation, since we require, that although the Einstein equation is
local, the curvature needs to depend on some matter outside the area we are looking at.
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• gµν Depends on the geometry and is a true Lorentz-tensor but does not contain
derivatives

• Γγµν Depends on the geometry and contains derivatives but is not a true Lorentz-
tensor

• Rα
βµν Depends on the geometry, is a true Lorentz-tensor and contains derivatives.

We thus need to build our equation with the Riemann-tensor.

The problem we immediately see, is that the Riemann-tensor has the wrong rank,
so we need to contract it with something. We use the metric tensor and try contracting
different indices:

• Try gαβRαβµν = Rβ
βµν . We see, that this has the right rank, but vanishes due to

the antisymmetry under the exchange of indices.

• Try gαµRαβµν . This tensor does not vanish and thus is a valid choice for our
tensor. We call it the Ricci-tensor :

gαµRαβµν = Rµ
βµν = Rβν (2.8.1.1)

Of course we can also raise its indices, to make a
(

2
0

)
-tensor:

Rαβ = gαα
′
gββ

′Rα′β′

Furthermore the tensor is symmetric, which we can see from

Rνβ = gαµRανµβ = gµαRµβαν = Rβν

• Try gανRαβµν = −gανRαβνµ = −Rβµ. So this gives us no extra information.

So altogether we see, that

All contractions of Riemann-tensor leading to a
(

0
2

)
-tensor are either 0 or

±Ricci.
Can we go even further and contract the last two remaining indices of the Ricci Tensor:

gαβRαβ = Rβ
β = gαβgµνRµανβ ≡ R (2.8.1.2)

which we call the Ricci -scalar15.

We put our knowledge together and find for a possible equation:

(. . . )Rµν + (. . . )Rgµν + (. . . )gµν = (. . . )T µν

Is this equation unique and the only solution? No! It is just the simplest equation
fulfilling the requirements. We could add terms like f(R)gµν and g(R)Rµν but these
only make our problem more complicated and so far the Einstein equation describes all
observations perfectly. We can therefore proceed.
15The physical interpretation of the Ricci scalar is a bit more subtle, one could say, that it is a kind of

“average curvature”, but this is very sloppy and not really well defined.
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2.8.2. Equations of motion

We know from SR, that

T µν;ν = 0

which is true in any frame and thus also applies in GR. This means, that we can impose
the constraint, that

[(. . . )Rµν + (. . . )Rgµν + (. . . )gµν ];ν = [(. . . )T µν ];ν = 0

Is this a real constraint or does this fol-
low directly from the construction of our the-
ory?
In fact we see, that this is not a real con-
straint, since we already built our theory to
be self-consistent and incorporate the evolu-
tion of matter (and thus energy) itself.

This means, that the Einstein equation (by
construction) needs to take the form(

Rαβ +Rµgαβ + λgαβ
)

;β
= 0 (2.8.2.1)

We look at the appearing terms one by one and look if they vanish:

• (λgαβ);β = 0, since we showed, that gαβ,β = 0 in any frame (see eq. (2.5.5.1)). So
this term can stay as it is.

• (µRgαβ);β = µR;βg
αβ + µRgαβ;β︸ ︷︷ ︸

=0

= µR;βg
αβ 6= 0 in general. So either this term

cannot exist or the first term needs to cancel it out.

• Rαβ
;β is the hardest to calculate. The problem can be largely simplified though.

We can show, that (for proof see A.1)

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0

which is called the second Bianchi-identity.
We can contract this tensor twice with the metric gαµ and get a

(
0
3

)
-tensor, which

is called the contracted Bianchi identity (also proven in A.1).
we contract two more indices with gβλ and rename dummy indices and finally get
the twice contracted Bianchi identity (proven in A.1):

2 · Rα
ν;α −R;ν = 2 · gβεRβν;ε −R;ν
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We can apply the metric gνµ to both terms in order to raise all indices and rename
dummy indices, which gives us

2(gνµgβεRβν;ε)− gµνR;ν = 0

which we can simplify by swapping the dummy indices ε↔ ν which finally yields16(
Rµν − 1

2
gµνR

)
;ν

= 0

We call the term in brackets the Einstein tensor Gµν :

Gµν ≡ Rµν − 1

2
gµνR (2.8.2.2)

This means, that we have to choose µ = −1
2

in the Einstein equation (2.8.2.1) and the
equation will be automatically fulfilled. λ re-
mains unconstrained. We call it the Cosmo-
logical constant Λ and view it as a physical constant17.

The Einstein equation then becomes:

Gαβ + Λgαβ = κTαβ (2.8.2.3)

where we have introduced the constant κ, which we will get by requiring the correct
Newtonian limit. This will be done in the next part.

2.8.3. Weak field limit

Weak field limit (w.f. limit) is what we have called Newtonian limit in the past. In GR
we can identify this weak field limit by perturbing the flat Minkowksi metric with a
small parameter hµν with |hµν |1. We only look at the first order and get:

gµν = ηµν + hµν + (higher orders)

Then the key to working out the correct equations characterizing the weak field metric,
we need to take a close look at the form of hµν and derive its properties:

16The notation taking the covariant derivative with respect to µ is more common but of course this is
the same since the Ricci tensor and the metric are both symmetric.

17A constant is the only possibility in this case, since a dependence on coordinates would give us
additional derivatives. The importance of Λ will become clear later in the course
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• hµν is not a
(

0
2

)
-Lorentz tensor. We see that from the fact, that hµν is a proper

metric minus the Minkowski metric, so if we look at a coordinate transformation
xα 7→ x̃α̃:

g̃α̃β̃ = Λα
α̃Λβ

β̃
gαβ = Λα

α̃Λβ

β̃
ηαβ + Λα

α̃Λβ

β̃
hαβ

so we see that we have two possibilities:

– If Λα
α̃ is the Lorentz transformation of SR, then Λα

α̃Λβ

β̃
ηαβ = η̃α̃β̃ which

means, that we can write

g̃α̃β̃ = Λα
α̃Λβ

β̃
gαβ = Λα

α̃Λβ

β̃
ηαβ︸ ︷︷ ︸

=ηα̃β̃

+Λα
α̃Λβ

β̃
hαβ

which means, that

h̃α̃β̃ = g̃α̃β̃ = Λα
α̃Λβ

β̃
hαβ

Wee see, that in this case hαβ in fact transforms like a proper
(

0
2

)
Lorentz

vector.

– Λα
α̃ = ∂xα

∂x̃α̃
is a general coordinate transformation. Then

Λα
α̃Λβ

β̃
ηαβ 6= ηα̃β̃

so we generally get:

h̃α̃β̃ = Λα
α̃Λβ

β̃
ηαβ + Λα

α̃Λβ

β̃
hαβ − ηα̃β̃

which is not a LT of a
(

0
2

)
-tensor

• Inverse metric of the w.f. limit:
We can just simply raise the index of hαβ with the Minkowski metric (in O(h)).
So we can construct gµν , so that gµαgαν = δµν with (proof in ex. 7, task 2)

gµν = ηµν − hµν with hµν = ηµαηνβhαβ

so ηαβ is just simply the index raising tensor of hαβ.
This is actually not a surprising result, since ηαβ must be the index raising tensor of
any perturbation, since if we take gαβ as index raising tensor we would immediately
get:

gαβhβν = ηαβhβν +O(h2)

• Trace of h:
We see, that we can generally find the trace of a tensor of rank 2:

T µν = gµβTβν = gνβT
µβ
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Which means, that we can contract µ with ν and we get

T ≡ T µµ = T µ
µ = gµνTµν = gµνT

µν

This means, that the trace of h is given by

h ≡ hµµ = gµνhµν = gµνh
µν

≈ ηµνhµν = ηµνh
µν at order 1 in h

We have to note though, that since hαβ is not a true
(

2
0

)
Lorentz-tensor, h is not

a Lorentz-scalar!

• Trace reverse tensor of h:
We define the trace reverse tensor as

h̄αβ = hαβ −
1

2
ηαβh (2.8.3.1)

This is also not a
(

0
2

)
Lorentz tensor.

Why do we call it trace reverse tensor? We see, that h̄ = −h:

h̄ = ηαβ
(
hαβ −

1

2
ηαβh

)
= h− 1

2
(ηαβηαβ)︸ ︷︷ ︸
=Tr(14)=4

h = −h (2.8.3.2)

This looks familiar to the Einstein tensor from eq. (2.8.2.2). This is not a coin-
cidence. In fact Gαβ is the trace-reverse tensor of the Ricci tensor.

• Riemann-tensor in the weak field limit
We know from eq. (2.7.1.1), that we can represent the Riemann tensor in terms
of the Christoffel symbols:

Rαβµν = gαγ
(
Γγβν,µ − Γγβµ,ν + ΓγσµΓσνβ − ΓγσνΓ

σ
µβ

)
But we know, that for hαβ = 0 the Christoffel symbol needs to vanish, so the lowest
non vanishing order of Γαµν needs to be linear in h:

Γαµν = 0 +O(h) + . . .

This means, that we can neglect all terms, which are quadratic in Γ and by using
eq. (2.5.5.2) we finally get

Rαβµν =
1

2
(gαν,βµ + gβµ,αν − gαµ,βν − gβν,αµ) (ηαβ,µν = 0)

=
1

2
(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ)
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• Einstein tensor in weak field limit
It turns out, that if we want to express Gαβ in this metric it is easier to express it
in terms of h̄αβ instead of hαβ (shown in ex. 7, task 1, optional task):

Gαβ = −1

2

(
ηµν h̄αβ,µν + ηαβη

µγηνδhµν,γδ − ηµν h̄µ,βν − ηµν h̄βµ,αν
)

which we will shorten down using the more compact notation:

(. . . ),µ ≡ gµν(. . . ),ν

Then we get

Gαβ = −1

2

(
h̄ ,µ
αβ,µ + ηαβh̄

,µν
µν − h̄ ,µ

αµ,β − h̄
,µ

βµ,α

)
(2.8.3.3)

Note, that we have kept the order of the derivatives here, in fact this is not
necessary since we are looking at a small perturbation and locally the index
raising tensor is just the Minkowski metric, which has a vanishing partial derivative:

(. . . ) ,µ
,µ = ηµν(. . . ),µν = ηµν(. . . ),νµ = (ηµν(. . . ),ν),µ = (. . . ),µ,µ

• Remarks on the differential operator (. . . ) ,µ
,µ

This operator in general has a non trivial solution, since

(. . . ) ,µ
,µ = gµν(. . . ),µν = gµν

∂

∂xµ
∂

∂xν
(. . . )

But for a small perturbation gµν = ηµν +O(h2) since all non-vanishing derivatives
need to be at least O(h). With this we get

(. . . ) ,µ
,µ = ηµν

∂

∂xµ
∂

∂xν
(. . . ) +O(h2)

= (− ∂2

∂t2
+ ∆)(. . . ) ≡ �(. . . )

with the Laplacian ∆ and the d’Alembertian � known from vector analysis.
Since � is the usual differential operator in free wave equations, in flat spacetime
this means, that we get plane waves:

�f = 0 ⇒ f = A · eikαxα

which gives us a condition for kα:

(k2
0 − k2

1 − k2
2 − k2

3)f = 0

⇒ k2
0 =

∑
i

k2
i = ω2
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2.8.4. Gauge transformations

We have seen from deriving the properties of our weak field limit, that the Einstein
tensor generally does not take a very simple form.
Although this perturbed manifold has an absolute geometrical existence we can of course
describe it in any system of coordinates, so we can try to find a coordinate system
which fulfils gµν = ηµν + hµν and which makes our calculations as easy as possible. We
call this a gauge transformation:

A gauge transformation is an infinitesimal change of coordinates, such that
a small hµν transforms into a small h̃µν

Mathematically we can express this with an infinitesimal vector ξα̃(xβ):

xα 7→ x̃α̃︸︷︷︸
new coordinates

= δα̃αx
α︸︷︷︸

old coordinates

+ ξα̃(xα)︸ ︷︷ ︸
difference “new→old” in each point

So we can write the transformation matrix and its inverse as

∂x̃α̃

∂xα
= δα̃α + ξα̃,α (2.8.4.1)

∂xα

∂x̃α̃
= δαα̃ − ξα,α̃ (2.8.4.2)

because in that case we get back the identity in linear order if we do a change back and
fourth:

∂x̃α̃

∂xα
∂xβ

∂x̃α̃
= (δα̃α + ξα,α̃)(δβα̃ − ξ

β
,α̃)

= δα̃αδ
β
α̃ +

�
�
�δβα̃ξ
α̃
,α −�

�
�δβα̃ξ
α̃
,α +O(ξ2)

= δβα +O(ξ2)

This means, that we can write the transformation gαβ → g̃α̃β̃ as

g̃α̃β̃ = (δαα̃ − ξα,α̃)(δβ
β̃
− ξβ

,β̃
)(ηαβ + hαβ)

= ηα̃β̃ − ηαβ̃ξ
α
,α̃ − ηα̃βξ

β

,β̃
+ hα̃β̃ +O(ξ2, ξ · h)

So by inserting h̃α̃β̃ = gα̃β̃ − ηα̃β̃ we see that

h̃α̃β̃ = hα̃β̃ − ξβ̃,α̃ − ξα̃,β̃ (2.8.4.3)

Hence we have found the gauge transformation of a metric perturbation.
We can use this knowledge to eliminate degrees of freedom:{

hµν → 10 d.o.f.
ξα → 4 d.o.f.

So we can eliminate four degrees of freedom with a gauge transformation.
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Lorenz gauge
Imagine an arbitrary coordinate system with a small hµν . We then compute h̄αν,ν and
impose18 a gauge transformation using a ξα, which obeys (similar to the Lorenz gauge
in electrodynamics)

�ξα = ξα,µ,µ = h̄αν,ν

where the ,α is a contravariant derivative. We then get a new h̃µν , g̃µν where (this will
be shown in ex. 7, task 2)

¯̃hµν,ν = 0 = ¯̃h ,ν
µν

which also implies, that

G̃αβ = −1

2
¯̃h ,µ
αβ ,µ

We can then use the d’Alembertian to write

G̃αβ = −1

2
·�¯̃hαβ in the Lorenz gauge (2.8.4.4)

Note: Since from now on we will work in the Lorentz-gauge we omit the in order to
simplify notations.

With this the Einstein equation in the weak field limit with the Lorenz gauge simplifies
to:

−1

2
�h̄αβ + Λgαβ = κTαβ

2.8.5. The Newtonian limit of General Relativity

While for many problems in nature, the Newtonian theory of gravity gives a first order
description already in the 19th century there were some deviations in measurements due
to GR corrections. We will look at a few examples:

• The measured shift in the perihelion angle of
Mercury was observed to deviate 43′′/century from
the predictions from Newtonian gravity even after con-
sidering the perturbations from other planets. This
deviation could be explained by Einstein.

18This does not follow trivially from the equation but was rather obtained from thinking a lot about
the structure of the Einstein equation.
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• The gravitational lensing of the
sun leads to deviations between the
apparent and true position of stars
when they pass close to the sun.

• GPS uses high precision measurements of time differences in
received light signals. Without correcting effects of GR these
measurements give completely wrong results.

How do we connect our weak field limit and the Newtonian limit mathematically?
We know, that in the Newtonian limit |hµν | is small (small curvature) and all v are small
(slow objects) v � 1. Then we can look at the components of the Einstein equation

−1

2
�h̄αβ = κTαβ (2.8.5.1)

We see that

•

T 00 = rest energy density + kinetic energy density︸ ︷︷ ︸
small

≈ rest energy density
1.7.2
= m · n for identical particles

So T 00 is not necessarily small. In fact it is O(v0) in an expansion in v. In
contrast

• T 0i = T i0 = O(T 00 · v) = O(v)

• T ij = T ji = O(T 00 · v2) = O(v2)

So in v we have a hierarchy:

|T 00| � |T 0i| � |T ij|

Note, that this is just the expansion in terms of v, but we still need to do the expansion
in terms of hµν . We only keep the leading order terms in both expansions and since the
Einstein equation has the form (2.8.5.1) we need to have the same hierarchy in h̄µν19:

�h̄00 � �h̄i0 � �h̄ij

⇒ h̄00 � h̄i0 � h̄ij

19The step from the first relation to the second is in fact a bit subtle. Although we could in principle
add a constant term α, a first order term αµx

µ or α((x1)2− (x2)2) and thus change the order, these
kind of functions are not allowed physically since h̄ is a small perturbation, hence terms which
include xµ are not allowed since they would diverge at xµ →∞ and a constant α would be so small,
that it would not matter.
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Then we can explicitly write out

h̄ = ηµν h̄
µν = −h̄00 + h̄11 + h̄22 + h̄33 = −h̄00 +O(h̄00v2)

but also

h̄µν = hµν − 1

2
ηµνh

(2.8.3.2)
= hµν +

1

2
ηµν h̄

so altogether we get

hµν = h̄µν − 1

2
ηµν h̄ (2.8.5.2)

This enables us to explicitly calculate the coefficients of hµν in leading order:

• h00 = h̄00 − 1
2
(−1)h̄ = −h̄+ 1

2
h̄+O(h̄v2) ≈ −1

2
h̄

• h0i = h̄0i = O(h̄v)� h̄00

• hi 6=j = h̄i 6=j = O(h̄v2)� h̄00

• hii = h̄ii − 1
2
h̄ = O(h̄v2)− 1

2
h̄ ≈ −1

2
h̄

which means, that the only remaining terms are the diagonal terms and the metric
gαβ = ηαβ + hαβ in first order becomes:

gαβ = ηαβ −


−1

2
h̄ 0 0 0

0 −1
2
h̄ 0 0

0 0 −1
2
h̄ 0

0 0 0 −1
2
h̄


and analogously the metric with the index lowered gives us

gαβ = ηαβ + hαβ

with

hαβ = ηαµηβνh
µν =


−1

2
h̄ 0 0 0

0 −1
2
h̄ 0 0

0 0 −1
2
h̄ 0

0 0 0 −1
2
h̄


We can shorten down this notation in the line elements

ds2 =

(
−1− 1

2
h̄

)
(dx0)2 +

(
1− 1

2
h̄

)(
(dx1)2 + (dx2)2 + (dx3)2

)
(2.8.5.3)

Which reduces the Einstein equation further to only include the 00-component and we
get

−1

2
·�h̄00 = κT 00 ⇔ 1

2
·�h̄ = κρ
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where ρ is the rest energy density.
We proceed by doing an approximation of �:

� ≡ − ∂2

∂t2︸︷︷︸
∂
∂t

=O(v ∂
∂x

)

+
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
≈ ∆ +O(v2∆)

so we finally get for the Einstein equation:

∆h̄ = 2κρ

How do we get the connection between h̄ and the usual gravitational potential Φ known
from Newtonian dynamics, so that we can get a value for κ? We already know, that

h̄

2κ
=

Φ

4πG
(2.8.5.4)

since ∆φ = 4πGρ. So in order to draw the connection we need to prove, that −∇h̄ gives
the acceleration (up to a normalization factor).
We look at the spacial part of the equation of geodesics (2.6.2.1)

m
dpi

dt
+ Γiαβp

αpβ = 0

and see, that

pα = (mγ,mv1γ,mv2γ,mv3γ) = (m, 0, 0, 0) +O(v)

which means, that in leading order we obtain

pi,0 = −Γi00p
0p0 = −m2Γi00

but with the metric from (2.8.5.3) we get (shown in ex. 7, task 2):

Γi00 = δij
(
h̄

4

)
,j

which means, that we finally have found the relation between h̄ and the acceleration:

m · pi,0 = m2 d2xi

dt2
= m2 ai︸︷︷︸

usual
acceleration

= −m
2

4
δijh̄,j = −1

4
∇h̄

This means, that

h̄

4
= Φ

(2.8.5.4)⇒ κ = 8πG (2.8.5.5)
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Remark on the relation between x0 and t:
Why do we write dpµ

dx0 = dpµ

dt
in the geodesic equation, i.e. use the x0-component as proper

time?
Normally we would have to take the proper time, since in the geodesic equation eq.
(2.6.1.2) the derivatives are taken with respect to proper time.
But if use the definition of the proper time

dt =
√
−dxµgµνdxν

and use the weak field-metric we see, that

dt2 = −dxµ(ηµν + hµν︸︷︷︸
(2.8.5.2)

= − 1
2
h̄δµν

)dxν

But for slowly moving particles, we saw that dx = O(v dx0)� dx0, so

dt2 ≈ −(dx0)2

(
η00 −

1

2
h̄

)
= (dx0)2

(
1 +

1

2
h̄

)
⇒ dt ≈

(
1 +

1

2
h̄

)1/2

dx0 ≈
(

1 +
1

4
h̄

)
dx0 = (1 + φ)dx0

This means, that the (small) difference between dt and dx0 is a second order correc-
tion, which we call post-Newtonian corrections.
In particular we find

dpi

dx0
=
∂pi

∂t

dt

dx0
= −m

4
δij
(

1 +
h̄

4

)
h̄nj = O(h̄2)

Remark on units:
If we would not use natural units, we would find

Gαβ = Λgαβ =
8πG

c4
Tαβ

and since in SI ρ = (mc2) · n we get ρ = ρmc
2 this altogether gives

∆φ =
4πG

c2
ρm ⇔ 4πGρm

which indeed gives us the usual gravitational potential from Newtonian dynamics if we
define φc2 ≡ φgrav. Indeed this gives the right units for the gradient:

a︸︷︷︸
ms−2

= − ∇︸︷︷︸
m−1

φgrav︸︷︷︸
m2s−2

Another choice is to extend natural units to

c = G = 1

by a proper choice of mass. Then we can use “meters”, “meters of time”, “meters of mass”
and in these units the Einstein equation further simplifies to

Gαβ + Λgαβ = 8πTαβ
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2.9. The Schwarzschild metric

In this section we will try to explicitly compute a solution of the Einstein equation in
the case of spherical symmetry.
We already know, that spherical coordinates imply

ds2 = −dt2 + dr2 + r2(dθ2 + sin2(θ)dϕ2)

where we have just used the metric of a 2-sphere and added the x0 =: t coordinate.
We can then find the components of the metric by using the properties of spherical
symmetry:

• Each element belonging to a given 2-sphere with fixed radius should have identical
properties:

ds2 = g00(dx0)2 + 2g0idx0dxi + g11(dx1)2 + 2g1idx1dxi + f(r, t)((dx2)2 + sin2(θ)(dx3)2)

with i = 2, 3. With a more convenient naming by using t, r, θ, ϕ as coordinate-
names this becomes

ds2 = gttdt2 + 2gtidtdxi + grrdr2 + 2gridrdxi + f(r, t)(dθ2 + sin2(θ)dϕ2)

• Since ~er and ~et need to be orthogonal to the 2-sphere (otherwise spherical symmetry
would be violated) and ~eθ and ~eϕ are tangents to the 2-sphere we see, that

~er · ~eϕ = 0
(2.4.4.1)

= grϕ

and analogously

grθ = gtθ = gtϕ = 0

which altogether leaves us with

ds2 = gtt(t, r)dt2 + 2gtr(t, r)dtdr + grr(t, r)dr2 + f(t, r)(dθ2 + sin2(θ)dϕ2)

• We know, that the components of the metric cannot depend on θ or ϕ since this
would also violate spherical symmetry.

• Finally we see, that if we define a transformation

r → r′ = (f(t, r))1/2

and use our symmetry arguments (no component can depend on θ, ϕ) the metric
in this system simplifies to20

ds2 = gttdt2 + gr′tdtdr + gr′r′dr
′2 + r

′2 (dθ2 + sin2(θ)dϕ2)︸ ︷︷ ︸
=:dΩ2

20We can simply use this, since in our transformation gµ′ν′ = ∂xα

∂x′µ gαβ
∂xβ

∂x′ν all derivatives except ∂r
∂r′ = 1

vanish.
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• To find the remaining components gtt, grt, grr we solve Gαβ = Tαβ

We proceed analogously as in electrodynamics and look at different cases:

– Interior solution: T µν takes a general (T ∈ SO(3)) form, so gµν depends
on ρ(r) and p(r)

– Exterior solution in vacuum: The stress-energy-tensor vanishes (locally)
so Gαβ = 0 and with the assumption of asymptotic flatness Rαβµν

r→∞→ 0 we
get to the Schwarzschild solution.

• Schwarzschild solution: With static boundary conditions we get for the metric
(Herleitung?):

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2

In fact Birkhoff proved, that this solution is always true, even if we do not assume a
static distribution of mass. The only requirements, which remain are spherical sym-
metry, vacuum outside the star and asymptotic flatness of spacetime. Note, that
spherical symmetry is not only required for the mass distribution but also for the move-
ment of particles, i.e. a rotating mass distribution only has axial symmetry due to
angular momentum.

Comparison between Schwarzschild and Newtonian metric
From the first term of the metric we can immediately identify φ = −M

r
, since the metric

of the Newtonian metric read

ds2 = −(1 + 2φ)dt2 + (1− 2φ) dx2︸︷︷︸
spacial
3-vector

but if we do this in the Newtonian metric we get:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1 +

2M

r

)
(dr2 + r2dΩ2)

We see two differences with respect to the Schwarzschild metric:

• grr = (1 + 2M
r

) instead of (1 + 2M
r

)−1

• (1 + 2M
r

) is also a factor of r2dΩ2

So we see, that the two metrics are in fact different. But how do we recover the
Newtonian metric from the Schwarzschild metric?

We see, that we need to take the limit |φ| = |M
r
| � 1, i.e. M small or r large. In that

case the Schwarzschild metric becomes

ds2 = −
(

1− 2M

r

)
dt2 +

(
1 +

2M

r
+O

(
M2

r2

))
dr2 + r2dΩ2
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We then change variables r → r̄ = r −M (∂xµ
∂xµ̄

P = δµµ̄):

ds2 ≈ 1

(
1− 2M

r̄ +M

)
dt2 +

(
1 +

2M

r̄ +M

)
dr̄2 + (r̄ +M)2dΩ2

= −

(
1− 2M

r̄

(
1 +

M

r̄

)−1
)
dt2 +

(
1 +

2M

r̄

(
1 +

M

r̄

)−1
)
dr̄2 + r̄2

(
1 +

M

r̄

)2

dΩ2

≈ −
(

1− 2M

r̄

)
dt2 +

(
1 +

2M

r̄

)
(dr̄2 + r̄2dΩ2)

so we see, that the Schwarzschild solution returns the Newtonian metric with spherical
symmetry for |M

r
| → 0.

In particular the Kepler orbital velocity is asymptotically the same at large r:

v(r)→ M

r

Furthermore we see, that the Schwarzschild metric has a singularity at r = 2M , since

grr
r→2M−→ ∞

For more informations on this case see 2.10. For “normal” objects though, this singularity
is never reached, e.g. for the sun R� ∼ 106 km�M� ∼ 1 km

2.9.1. Conserved quantities

To derive the equations of motion for particles in the Schwarzschild solution we will
heavily rely on conserved quantities, so we will take some time to take a closer look at
the implications of spherical symmetry and a static metric on conservation laws.

General remarks on the connection between the metric and conservation laws
We remind ourselves of the geodesic equation from 2.6.1:

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0

Furthermore we have seen, that for a massive particle we can chose λ = t so dxα

dλ
= pα

m

and

m
d

dt
pµ = −Γµαβp

αpβ

and analogously we can chose λ for a photon so that Eobs = hνobs = −~p · ~Uobs =
−dxα

dλ
gαβU

β
obs, which is exactly the definition for the energy from 1.6.5 which is equivalent

to the condition, that an observer at rest in a LPIF measures hν = dx0

dλ
. So we get

d

dλ
pµ = −Γµαβp

αpβ
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In both cases we can lower the index (as shown in ex. 6, task 3) and get:

massive: m
dpβ
dt

photon:
dpβ
dλ

 =
1

2
gµν,βp

µpν

so we immediately see, that symmetries of the metric imply conserved quantities:

if gµν,β = 0 ∀µ, ν ⇒ pβ = const along all geodesics

Conserved quantities in the Schwarzschild metric
In case of the Schwarzschild metric we have three conserved quantities, which follow
from the conditions static (1) and spherical symmetry (2):

1. Spherical symmetry:
To see the consequences of spherical symmetry it is easier to rotate the frame
(without loss of generality), so that the geodesic of a given particle is along the
equatorial plane, i.e. θ = π

2
. Then xµ(λ) = (t(λ), r(λ), 0, ϕ(λ)). Then the two

conservation laws follow from{
dθ
dλ

= 0 ⇒ pθ = 0

∀µ, ν gµν,ϕ = 0 ⇒ pϕ = const along all geodesics

the second condition is equivalent to the conservation of angular momentum,
which we know from Newtonian mechanics.

2. Static metric:

∀µ, ν gµν,0 = 0 ⇒ p0 = const along all geodesics

General remarks on the connection between E, p0 and p0:
In general E 6= −p0 6= −p0, as these are in principle very different values:

• E = Eobs = −~p · ~Uobs depends both on the observer and the frame where the
measurement is performed

• p0 = 0-component of the “true” 4-momentum pµ in a given frame. It increases
(decreases) when the particle is accelerated (decelerated).

• p0 is “something” which encodes information on the particle and the gravitational
environment, since p0 = g0µp

µ. From above we know that this term is constant if
the metric is static.

We can also use a simple example to show, that they are in fact different:
Let ~Uobs = (v0, 0, 0, 0) with ~Uobs · ~Uobs = (v0)2g00 = −1, so v0 = (−g00)−1/2

Eobs = −~p · ~Uobs = −pµgµ0(−g00)−1/2 = p0(−g00)−1/2 = −(p0g00 + pigi0)(−g00)−1/2

In particular we see, that the three quantities are only equal in a LPIF, since there
g00 = 1 and g0i = 0.
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2.9.2. Evolution of one massive particle

Again we set θ = π
2
, so that the particle only moves in the equatorial plane. We can

then use our knowledge about conserved quantities to write down p0, pθ, pφ:
p0 = const = −K̃m
pθ = const = 0

pϕ = const = L̃m

with the constants K̃ and L̃, which we will need to determine from the equation of
geodesics. We can then write the contravariant 4-momentum by using the Schwarzschild
metric and get: 

p0 = g0νpν = g00p0 =
(
1− 2M

r

)−1
mK̃

pr = m dr
dτ

as usual
pθ = 0

pϕ = gϕνpν = gϕϕpϕ = mL̃
r2 sin2 θ

= mL̃
r2

Normally we would now use the geodesic equation to solve the equation of motion for
each component but since we already have three integrals solved (0, θ, ϕ), so we can
directly find the equation for r by just using:

~p · ~p = −m2 ⇔ p0g00p
0 + prgrrp

r + pϕgϕϕg
ϕ = −m2

so we directly obtain the differential equation:

−m2

(
1− 2M

r

)−1

K̃ +m2

(
1− 2M

r

)−1(
dr

dτ

)2

+
m2L̃

r2
= −m2

so after simplifying the remaining terms are

(
dr

dτ

)2

= K̃2 −
(

1− 2M

r

)(
1 +

L̃2

r2

)
(2.9.2.1)

and together with

pϕ = m
dϕ

dτ
=
mL̃

r2
(2.9.2.2)

we have characterized the motion of our particle completely. Unluckily this is not a
trivial differential equation, so we will not try to derive solutions but rather look at
different cases for K̃,L̃ and M:
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We notice, that the left hand side of (2.9.2.1) is always positive, which means, that

Ṽ 2(r) ≡
(

1− 2M

r

)(
1 +

L̃2

r2

)
< K̃2

Furthermore we can extract some information from the shape of Ṽ (r). The asymptote
of this function is 1 for every value of M and L̃ and we see the singularity at r = 2M .
Furthermore we see from calculating the extrema of Ṽ (r) (for full calculation see B.1),
that there are two cases:

• L̃2 < 12M2: Ṽ (r) is monotonic. We then have the following possibilities for the
geodesics:

→ A particle arriving from r → ∞ requires K̃ > 1 and just falls onto the star
at some radius Rstar > 2M

→ A particle, which is ejected by the star can go to∞ if K̃ > 1 or “hit the curve
Ṽ (r)” and fall back if K̃ < 1

• L̃2 > 12M2: Ṽ (r) has a local maximum and a local minimum, which we will call
Vmax and Vmin. The possibilities for the geodesics are:

→ A particle arriving from r →∞ requires K̃ > 1 and it

∗ falls on the star if K̃ > Ṽmax

∗ “hits the curve Ṽ (r)” and goes back to ∞ if K̃ < Ṽmax similar to the
hyperbolic orbits in Newtonian gravitation (it is not an exact hyperbola
though)

→ A particle, which is ejected by the star can

∗ go to ∞ if K̃ > Ṽmax > 1

∗ fall back if 1 < K̃ < Ṽmax
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again similar to Newtonian gravity

→ Finally particles can be trapped in a close orbit if Ṽmin < K̃ < 1 with the
special case of a circular orbit if K̃ = Ṽmin. Otherwise we get a nearly elliptic
trajectory. This solution is not an exact ellipse though:
If one solves r(τ) for this case one finds, that r(τ) is periodic but ϕ(r) is
monotonic with different periodicity than the radius, which means that a
fixed point, i.e. the point where r is minimal in each rotation, called the
perihelion rotates by some angle δϕ

2.9.3. Calculation of perihelion shift

To calculate the precession angle of a planet (in this case mercury) we need to do two
steps:
First we need to integrate

dr

dτ
=

√
K̃(r)2 − Ṽ (r)2

to find the period ∆τ between two minima of r.
We furthermore know, that

dϕ

dτ
=
pϕ

m
=
gϕϕpϕ
m

=
L̃

r2

so we need to compute

∆ϕ =

ˆ ∆τ

0

dϕ

dτ
dτ =

ˆ ∆τ

0

L̃

(r(τ))2
dτ

unluckily we again have no easy analytic solution but an expansion in M
L̃

gives us the
leading post-Newtonian correction for a nearly circular orbit. The proof for why this
gives this limit can be done in two ways:

1. We know that in the weak field limit M
r
� 1 but for a bound orbit r also stays in

the order of rmin (see (B.1.0.1)):

rmin =
L̃2

2M

(
1 +

√
1− 12M2

L̃2

)−1

so

M

r(τ)
∼ M

rmin
=

2M2

L̃2

(
1 +

√
1− 12M2

L̃2

)−1
!
� 1

which is only fulfilled for M2

L̃2 � 1
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2. Use the newtonian limit where the angular momentum is just L = mrv. Then for
a circular orbit

v =

√
M

r
, |v| � 1

In GR we know, that

pϕ = gϕϕp
ϕ = r2m

dϕ

dτ
= mr(r

dϕ

dτ
) = mrv

so

L̃ = rv ⇒ M2

L̃2
=

M2

r2v2
=

M2

r2
(
M
r

) =
M

r

This means, that if we again take the weak field limit M
r
� 1 we also get M2

L̃2 � 1

Using this approximation we can calculate the perihelion shift in leading order in M
r
21:

∆ϕ = 2π + 6π
M2

L̃2
+O

(
M4

L̃4

)
= 2π + 6π

M

r
+O

(
M2

r2

)
In the special (historical) case of mercury if we plug in M = M� and mercury’s orbiting
radius R ∼ 0.4 AU we get

∆ϕ− 2π ≈ 5 · 10−7 rad

and after computing the number of orbits per century, one finds a perihelion shift of 43′′

per century, which is exactly what astronomers had found in 1882 and which had no
physical explanation so far.

2.9.4. Evolution of a photon

In the case of a photon we do analogous considerations to a massive particle. The
equations 

p0 = const ≡ −K
pθ = 0

pϕ = const ≡ L

still holds, so we get 
p0 = g00p0 =

(
1− 2M

r

)−1
K

pr = dr
dλ

pϕ = gϕϕpϕ = L
r2 = dϕ

dλ

21We will skip the explicit calculation here, since it is quite lengthy.
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Again we can take the shortcut not by using ~p · ~p = 0 instead of solving the geodesic
equation:

0 = p0g00p
0 + prgrrp

r + pϕgϕϕp
ϕ

⇒
(

dr

dλ

)2

= K2 −
(

1− 2M

r

)
L2

r2
(2.9.4.1)

so we can define V 2(r) analogously to above:

V 2(r) ≡
(

1− 2M

r

)
L2

r2
< K2

again we look at the shape of V (r) (for a detailed calculation see B.1):

→ A photon (or any other massless particle) arriving from r →∞
* Falls on the star if K > Vmax, i.e. if L <

√
27KM22

* “hits curve V (r)” and goes back to r → ∞ if K < Vmax. This deflection of
light is called gravitational lensing (see 2.8.5).

→ A photon which is ejected from the star

* goes to ∞ if K > Vmax.

* Falls back in the (very rare) case 2M < Rstar < r < 3M23

We furthermore see, that there is no closed orbit for light rays24.

22Later we will see, that L
K is the impact parameter d, so we can rephrase this condition to d <

√
27M

23While this is a very strong constraint neutron stars fulfil this condition.
24r = 3M would be a closed orbit but it is unstable.

Theory of Relativity and Cosmology 75



2.9.5. Deflection of light

2.9.5. Deflection of light

We now want to explicitly calculate the deflection angle for gravitational lensing. We
know (rename K → E)

dr

dλ
= ±

√
E2 −

(
1− 2M

r

)
L2

r2

dϕ

dλ
=
L

r2

so

dϕ

dr
= ± 1

r2

[(
E

L

)2

− 1

r2

(
1− 2M

r

)]−1/2

We notice that when r →∞ (only approximating the term in the square root):

lim
r→∞

dϕ

dr
= ± 1

r2

L

E

Furthermore we know, that when the photon

• arrives: dϕ
dλ
< 0, dr

dλ
< 0⇒ dϕ

dr
> 0

• leaves: dϕ
dλ
< 0, dr

dλ
> 0⇒ dϕ

dr
< 0

So we can associate the signs for dϕ
dr

to the incoming and outgoing photon:{
t→ −∞ ⇒ dϕ

dr
→ + 1

r2
L
E

t→ +∞ ⇒ dϕ
dr
→ − 1

r2
L
E

We can now use a geometrical reasoning at t = ±∞ to show, that (L
E

) = d:
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In the small angle approximation we get

d = r(π − ϕ) ⇒ π − ϕ =
d

r

d = (r + dr)(π − (ϕ+ dϕ)) ⇒ π − ϕ− dϕ =
d

r + dr
So altogether we get

dϕ =
d

r
− d

r + dr
=
d

r

(
1− 1

1 + dr
r

)
taylor
≈ d

r

(
1− 1 +

dr
r

)
=
d · dr
r2

so

dϕ

dr
=

d

r2
=

L

r2K
⇒ d =

L

K

We can then calculate the change in angle ϕout − ϕin by integrating:

ϕout − ϕin =

ˆ ϕout

ϕin

dϕ =

ˆ rmin

+∞

dϕ

dr︸︷︷︸
>0

dr +

ˆ +∞

Rmin

dϕ

dr︸︷︷︸
<0

dr

= 2

ˆ +∞

rmin

− 1

r2

[
d−2 − 1

r2

(
1− 2M

r

)]−1/2

dr

≡ ∆ϕ− π

Again we can take the weak field limit |∆ϕ| � 1 which requires rmin ∼ d which can be
rewritten to

M

r
� 1⇔ M

rmin
� 1⇔ M

d
� 1

in this limit we find (not derived here) Herleitung?

|∆ϕ| = 4
M

d
+O

(
M2

d2

)
Remark: Before GR there were already attempts to incorporate the deflection of light
in Newton’s theory but there already some problems occured:

• If one assumes a photon to be a massive particle at speed c and takes the limit
m→ 0 one finds ∆ϕ ∼ 2M

d

• If one assumes the photon to be massless from the beginning the deflection is
∆ϕ = 0

The gravitational deflection of light was first observed by A. Eddington during a total
solar eclipse in 1919. He measured the difference in angle when stars passed by the sun
and the result corresponded to the predicted difference of ∆ϕ = 4M�

R�
= 1.74′′

While this effect is very small in case of the sun, there are spectacular clusters and
galaxies, which cause strong lensing so one gets arclets, multiple images etc.
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2.10. Black holes

The prediction, that objects can exist from which light cannot escape is not really new.
In Newtonian mechanics if one assumes the speed of light to be finite and and uses the
classical escape velocity

v2 =
2GM

r

we see, that no light can escape if

2GM

r
> c2

which in geometrized units simplifies to

r < 2M

with the mass M and radius r of the object25.
This was already postulated in the 18th century, since it was already known by then
that the speed of light is finite. Since we can also express M and r by the density

ρ =
3M

4πr3

so we can express the limit in terms of M, r and ρ (where we need two of the above). In
particular this does not impose a limit on ρ. For example:

• If ρ = ρwater we get a black hole if M ≥ 109 ·M�

• If R = R� we get a black hole if ρ ≥ 106 · ρ�

• if M = M� we get a black hole if ρ ≥ 1018 · ρ�

2.10.1. The Schwarzschild metric at r → 2M

We look at the limit r → 2M and look at the behaviour of the metric grr →∞. Consider
a radial infall:

dϕ

dr
= 0, L̃ = 0 (we consider a massive particle)

We look at the coordinate- and proper time:

1. We already know that

dr

dτ
= −

(
K̃2 − 1 +

2M

r

)−1/2

where τ = proper time

25By coincidence this is also the solution we get in GR.

Theory of Relativity and Cosmology 78



2.10.2. Kruskal-Szekeres coordinates

Then the time to go from some (fixed) rini > 2M to r = 2M is

∆τ =

ˆ 2M

rini

(τ
r

)
dr =

ˆ 2M

rini

− dr√
K̃2 − 1 + 2M

r

which gives a finite, well defined result.

2. The 4-velocity of the object is ~U = ( dt
dτ
, dr

dτ
, 0, 0) so

dt

dτ
= U0 = g00U0 = g00p0

m
= −g00K̃ =

(
1− 2M

r

)−1

K̃

The problem that arises from this is, that for r → 2M :

∆t =

ˆ 2M

rini

(
dt

dτ

)(
dτ

dr

)
dr =

ˆ 2M

rini

− K̃ dr(
1− 2M

r

)√
K̃ − 1 + 2M

r

r→2M→ ∞

So we see, that the physical proper time is finite, just the coordinate time diverges.
This implies, that nothing is singular, just our choice of coordinates is inappropriate
for studying black holes.

2.10.2. Kruskal-Szekeres coordinates

The first alternative choice of coordinates, which circumvents this problem was presented
in 1960 by M. Kruskal and G. Szekeres and thus has the name Kruskal-Szekeres
coordinates (KS-coordinates). We start from the Schwarzschild metric and redefine
the coordinates t, r to26

r > 2M :

{
R =

√
r

2M
− 1 e

r
4M cosh

(
t

4M

)
T =

√
r

2M
− 1 e

r
4M sinh

(
t

4M

)
r < 2M :

{
R =

√
1− r

2M
e

r
4M sinh

(
t

4M

)
T =

√
1− r

2M
e

r
4M cosh

(
t

4M

)
with T > −R. We see, that in these equations we still have the divergences for r → 2M
but the singularities here are not physical since they compensate the divergences in
the Schwarzschild solution.
In fact we can rewrite these coordinates such that at the Schwarzschild radius T and R
simply switch:

outside:R > 2M


R =

√∣∣∣ r
2M
− 1
∣∣∣ e r

4M cosh

(
t

4M

)
= T

T =

√∣∣∣ r
2M
− 1
∣∣∣ e r

4M sinh

(
t

4M

)
= R

 inside:R < 2M

26We will leave out the explicit proof here since it is quite lengthy.
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With this transformation we can rewrite the line element to

ds2 =
32M3

r(T,R)
e−

r(T,R)
2M (−dT 2 + dR2) + r2(T,R)dΩ2 (2.10.2.1)

which has no singularities. Additionally in the case of photons with radial trajectories
we get dR = ±dT like in the Minkowski metric.

Remarks

• There is still a singularity at r → 0 because we assume all mass to be concentrated
in one single point (this is of course not realistic)

• KS coordinates are better for studying black holes but Schwarzschild coordinates in
practice are often still better for other problems because of the obvious Newtonian
limit, the limit t → τ for r → ∞, obvious asymptotic flatness and the generally
simpler form of equations.

• (T,R) is defined in a non-trivial region only. To find this region we look at the
behaviour of T and R. We find:

T

R
= tanh

(
t

4M

)
R > 2M

T

R
= tanh

(
t

4M

)−1

R < 2M

and

R2 − T 2 =
∣∣∣ r
2M
− 1
∣∣∣ e r

2M (2.10.2.2)

which means, that t = const⇔ T
R

= const and r = const↔ R2 − T 2 = const.
This means, that we can plot T and R:
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Figure 2.1.: KS coordinates with 2M = rSchwarzschild = 1 (taken from Wikipedia)

We see, that quadrant I is the exterior region of the Black hole and II the interior
region, whereas the boundary between exterior and interior is the Schwarzschild
radius.
We exclude quadrants III and IV since they give the same results as I and II just
with negative t and r and this is unphysical. There are theories though, which
also consider these parts and call quadrant III the parallel exterior region and IV
a white hole.

• We know, that for massive/massless particles we always have ds2 ≤ 0, which
means, that (

T

R

)2

≥ 1 +
r3

32M3
e

r
2M

(
dΩ

dR

)2

⇒
∣∣∣∣dTdR

∣∣∣∣ ≥ 1

or more precisely:∣∣∣∣dTdR

∣∣∣∣ = 1 for radial photons

> 1 for non-radial photons and massive particles

This means, that we can draw radial photons as 45◦ lines in our diagram:
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We immediately conclude from this, that nothing can cross the divide from
r < 2M (T > R) to r > 2M (T < R):

Furthermore we see, that any geodesic with a least one event in the region r < 2M
will necessarily end up on the Black hole at r → 0, so the sphere with r = 2M is
the Horizon of the Schwarzschild BH27.

Remarks:

• We only discussed the Schwarzschild BH, which is spherically symmetric, static
and with constant R. This is not a realistic assumption since a general BH is
rotating and thus only has axial symmetry (Kerr BH), more complicated in the
sense that it is asymmetric, dynamical, accreting mass etc.

• The Notion of a BH horizon is loosely defined:
For a dynamical BH we would need to consider the entire spacetime until t→∞,

27Horizon in this sense means, that we cannot see past this point similar to the horizon on earth.
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since only actually calculating the geodesic will show us whether a particle can
escape the BH or not.

• In any case the horizon has no special physical property. It is like any other place
around a BH28.

• Mathematically the KS coordinates do a very peculiar thing to achieve their special
properties. They are time dependent! We can see this if we look at any point
with fixed r (e.g. the Schwarzschild horizon r = 2M) where we can use (2.10.2.2)

R2 − T 2 = const (R2 − T 2 = 0 in the Schwarzschild case)

so as T increases R has to increase as well. Hence the radial coordinate R is
moving outwards with increasing time T . This expansion happens slower than
c outside, and faster than c inside the Schwarzschild horizon.

2.10.3. Observing Black holes

Since Black holes do not emit any radiation29 we can only observe BH indirectly :

• Stellar mass BH: 1− 10M�
We know that these BH are formed out of stars when a star becomes a white
dwarf (delocalised electrons), which then becomes a neutron star (only neutrons)
and finally collapses into a black hole.
Since the BH is invisible when isolated we only
see them when another object orbits them (binary
systems, e.g. pulsar and BH).

• Supermassive BH: ∼ 106M�
These are found near the center of almost every
galaxy. They are detected through the motion of
mass.

• Intermediate BH: 10− 106M�
These were only found in 2015 with observation
of graviational waves, which found BH merging
with masses M ∼ 10− 70M�. There is no astro-
physical explanation for them yet.

28Unlike in most science-fiction where weird stuff happens at the Schwarzschild radius. We will explicitly
calculate this in ex. 10, task 1

29This is not entirely correct. There is a postulated radiation, the Hawking radiation.
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2.10.4. Gravitational lensing around black holes

We want to understand the lensing patterns that would be visible, if we were looking
directly at a black hole. While no telescope has yet taken any direct images of the
lensing pattern of a black hole, we can simulate it by just calculating the geodesics of
photons around it. Such a simulation is shown in the figure below.

We have drawn in two distinctive angles θ1 and θ2 whereas

• below θ2: completely black region

• around θ2: A fuzzy ring

• around θ1: Another fuzzy ring

• otherwise we see more or less distorted images of the stars/clouds surrounding the
BH.
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The interpretation of this pattern is, that θ1 and θ2 correspond to the geodesics shown
in the image below.

More turns are also possible but θ2 ≈ θ3 ≈ θ4 . . . . This means, that We have three
regions:

• θ > θ1: Image of the full sky in all directions (even behind the observer)

• θ2 < θ < θ1: Second image of the sky, but inverted (like a mirror)

• θ < θ2: No possible geodesics/all geodesics end in the BH. So the black circle is an
“image” of the sphere with radius 3M ! (not the Schwarzschild radius at 2M)

2.11. Gravitational waves

We have not yet looked at the question whether for a given Tµν , gµν is unique. It turns
out, that from the Einstein equation

Gµν [gµν ] = 8πTµν

the answer is no. The solutions differ through gravitational waves (GWs), which are
solutions to the equation

Gαβ = 0

with a small amplitude (δgµν � 1).

2.11.1. Gravitational waves in nearly flat spacetime

We will first look at the concept of gravitational waves in the weak field limit:

−1

2
�h̄µν = 8πT µν
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which has the advantage, that this limit turns our second order DEQ into a first order
one. We will furthermore look at GWs propagating in a Minkowski background:

gµν = ηµν + hµν

and with � = ∂µη
µν∂ν gravitational waves are just the solutions of

�h̄µν = 0 (2.11.1.1)

Note: In contrast to the newtonian limit from 2.8.5 where we take the weak field limit
with h̄00 � h̄0i � h̄ij here we only take the weak field limit, so

h̄00 ∼ h̄0i ∼ h̄ij

The solution to our differential equation are then plane waves:

h̄µν = Re
[
Aµνeikαxα

]
(2.11.1.2)

with the 4-wave covector ~k and the complex tensor Aµν which also contains the phase
information.

We look at some properties of waves, that we already from electrodynamics:

ψ = Aei(−ωt+k·x)

with the frequency ω and the 3 wavevector k.
This gives the dispersion relation:

v(k) =
ω(k)

|k|
⇒ ω(k) = v(k)|k|

and if v is independent of k then

ω(k) = v|k| = v(k · k)1/2

For gravitational waves this becomes

�h̄µν = ηαβ∂α∂βh̄µν = 0

⇒ ηαβ(ikα)(ikβ)h̄µν = 0

and from this directly follows

kαη
αβkβ = 0 = kαk

α = null vector

which implies, that kα must be tangent to the worldline of photons (see 1.6.7).
In turn this implies, that

kαηαβk
β = −(k0)2 + (k1)2 + (k2)2 + (k3)2 = 0 ⇒ ω2 = |k|2
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which means, that all gravitational waves propagate at the speed of light.

Note, that to obtain

−1

2
�h̄αβ = 8πGTαβ

and

�h̄αβ = 0

for gravitational waves, we worked in the Lorenz gauge which restricts Aαβ since

h̄αβ,β = 0 ⇒ (ikβ)Aαβ exp[. . . ] = 0

Thus

Aαβkβ = 0

which means, that Aαβ must be orthogonal to kβ.

As we can see though, the Lorenz gauge is not unique:
We constructed it using ξα such that

�ξα = h̄αβ,β

but since we can always add a ξα with ξ̃α = ξα + ζα which fulfils

ζα = Bα exp(ikµx
µ), kµk

µ !
= 0 (We omitted the Re(. . . ))

⇒ �ζα = ηαβ
∂

∂xα
∂

∂xβ
ξβ = kµk

µBα exp(ikµx
µ) = 0

we have this degree of freedom to impose an additional restriction. But what is the
most convenient way to chose it?
This leads us to the following theorem (will be proven in ex.11, task 1):

If we take the same kµ for the GW and for ξα, we can always choose Bα in
such a way, that

Aαα = 0︸ ︷︷ ︸
Tr(Aαβ)=0

and AαβU
β = 0︸ ︷︷ ︸

Aαβ⊥Uβ

for any fixed Uβ

Additionally the condition from the beginning still holds:

Aαβk
β = 0

So this type of gauge is a special type of Lorenz gauge. We get the sim-
plest equations by chosing ~U = (1, 0, 0, 0), which then is called the traceless
transverse (TT) gauge. Most calculations with GW are done in this gauge.
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In the TT gauge it is easy to compute Aαβ. For a GW going in x3-direction (~k =
(ω, 0, 0, ω)) we get for example:

Aαβ =


0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0


We get this result if we use our three conditions:

AαβU
β = 0⇔ Aαβδ

β
0 = 0⇔ Aα0 = 0

Aαβk
β = 0⇐ Aα3k

3 = 0⇐ ωAα3 = 0

Aαα = 0⇔ ηαβAαβ = 0⇐ η11A11 + η22A22 ⇔ A22 = −A11

This means, that we have 2 independent modes.

Remarks:

• If we chose a different ~k we get different non-zero components and if we chose a
different ~U we also get non-zero component in the time part but still the number
of independent modes remains as two30.

• Here we are studying GWs propagating in the Minkowski background (flat space+vacuum
everywhere). Of course this does not have to be always the case. Generally the
metric is of the form

gµν = ḡµν + hµν︸︷︷︸
GWs

where ḡµν is any background metric describing a physical problem. The solution
for hµν are then not simply plane waves but take up a more complicated form.
Nevertheless they still have the same two independent degrees of freedom
for every kµ, i.e. for every frequency ω and direction

(
~k
ω

)
• In the TT gauge since

Aαα = 0 ⇒ h = −h̄ = hαα = 0

We can easily see that hαβ and h̄αβ are the same

hαβ = h̄αβ − 1

2
ηαβ h̄︸︷︷︸

=0

= h̄αβ

which means, that theGW solution directly gives the full perturbed metric:

gµν = ηµν + Aµνe
ikαxα

30This number of independent modes will be important in 2.11.5
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2.11.2. Effect of gravitational waves on test particles

Intuitively we would expect that if gravitational waves are measurable they need to
exert some kind of force (since we can only measure effects if they induce some kind
of interaction which is only possible through forces). To check this we work in the TT
gauge and place a massive particle which is initially at rest at t = t0, so dxi

dt
= 0. We

can compute the motion of the particle with the equation of geodesics:

d2xα

dt2
= −Γαµν

dxµ

dt

dxν

dt

Since we are in almost flat spacetime x0 = t =proper time and the initial 4-velocity is
~U = d~x

dt
= (1, 0, 0, 0) which means, that

d2xα

dt2
= −Γα00 · 1 · 1

with

Γα00 =
1

2
gαβ(gβ0,0 + g0β,0 − g00,β)

=
1

2
ηαβ (hβ0,0 + h0β,0 − h00,β)︸ ︷︷ ︸

vanish in the TT gauge

= 0

So we get

d2xα

dt2

∣∣∣∣
t=t0

= 0

which means, that the test particle feels no acceleration and remains at rest forever.
The conclusion is, that GW generate no apparent force on particles. Their effect (if it
exists) must be truly different from any possible effect from Newtonian gravity or known
waves (such as EM-waves, mechanical waves, . . . ).

To actually see the effect of GW we need to take two particles M and N , which we
place at the locations

~M = (t, 0, 0, 0) ~N = (t, ε1, ε2, ε3)

where we assume εi to be small for simplicity.
Like before we assume,that the GWs propagate along the e3-direction but this time we
compute the distance between ~M and ~N :

ds2 = dxµgµνdxν with dxµ = ~N − ~M = (0, ε1, ε2, ε3)

= dxi(ηij)dxj︸ ︷︷ ︸
=(ε1)2+(ε2)2+(ε3)2=L2

+ dxihijdxj︸ ︷︷ ︸
=[(ε1)2A11+(ε2)2A22+2ε1ε2A12]e−ikµxµ
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where L is the distance in Minkowski spacetime. If we assume a GW in x3-direction,
i.e. kµ = (ω, 0, 0, ω) and ikµxµ = −iω(x0 − x3) we get

proper distance = ds =
(
L2 + [A11((ε1)2 − (ε2)2) + 2A12ε

1ε2]e−iω(x0−x3)
)1/2

which we can expand to

ds =

(
L2 + Re

([
A11

(
(ε1)2 − (ε2)2

)
+ A12

((
ε1 + ε2

√
2

)2

−
(
ε1 − ε2

√
2

)2
)]

eiω(x0−x3)

))1/2

Physical interpretation
We consider the two possible modes A11 6= 0, A12 = 0 and A12 6= 0, A11 = 0:

• A11 6= 0, A12 = 0: We assume, that A11 is real and positive. In this case when

eiω(x0−x3) = 1, i.e. − ω(x0 − x3) = 2πN N ∈ Z

ds simplifies to

ds = (L2 + A11((ε1)2 − (ε2)2))1/2

so for any εi we can say that distances increase along x1, decrease along x2 and
remain invariant along x3.
Analogously when we look half a period later such that

e−iω(x0−x3) = −1, i.e. − ω(x0 − x3) = (2N + 1)π N ∈ Z

Distances decrease along x1 and increase along x2

• A12 6= 0, A11 = 0: Again we assume, that A12 is real and positive. Then for

−ω(x0 − x3) = 2πN N ∈ Z

distances increase along x1+x2
√

2
and decrease along x1−x2

√
2

, so the axis of motion
is rotated by 45◦.
Analogously for

−ω(x0 − x3) = (2N + 1)π

we get the opposite.

We can visualize this effect if we take the scenario above and imagine particles forming
a perfect circle along the x1, x2 plane, which is centered on the origin.
Such a circle can be described by the vector

~v = (t, ε1, ε2, x3)

which fulfils
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(ε1)2 + (ε2)2 = L2

x3 = const (in our case we choose x3 = 0)

Although these particles keep the same coordinates when
the GW passes by, their physical distances change.
Hence we need to look at the physical distance, where
we compute the ratio of the two axes of our ellipse. For
the maximum elongation (ωt = 2πN) we get the ratio

large axis
small axis

=
(L2 + A11L

2)1/2

(l2 − A11)1/2
=

√
1 + A11√
1− A11

≈ 1 +
1

2
A11 +

1

2
A11 +O(A2

11) = 1 + A11 +O(A2
11)

(the result for A12 is the same). Hence we get two modes which are rotated by 45◦, in
phase and have the same amplitude.

The modes are often referred as+-Mode for A11 6= 0
and ×-Mode for A12 6= 0.

Comment: All this looks familiar to the study of the polarization of light. So we can
call the two modes the two degrees of polarization of GWs31.

2.11.3. Detection of Gravitational waves

There are two major methods of detecting gravitational waves of which only one has
worked so far.
31But unlike EM-waves, which are oscillations of fields GW are the polarized oscillations of spacetime.
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Resonant bars: Imagine a massive cylinder out of metal (or another crystal).

Without EM interactions each atom of the solid would
remain at fixed coordinates when a GW passes by but EM
interactions want to keep the atoms at a fixed physical
distance. This effect is very small but if the GW are ori-
ented correctly w.r.t the bar and if their frequency coincides
with the proper oscillation frequency of the (slightly elastic)
solid then the oscillations of the bar’s physical size is ampli-
fied by the resonance, which in principle could be detected.
Unluckily the effect is so small that no current experiment
has achieved sufficient sensitivity to have measured any
GW.

Interferometers: GW interferometers are in principle just
large Michelson-Morley interferometers which measure the difference in length of two
arms. The advantage of this principle is, that differences in length are a lot easier to
measure than absolute lengths. Nevertheless the difference ∆d, that a GW causes in a
detector of 4 km length is ∼ 10−21 m (see ex. 10, task 2) so a lot of technical challenges
have to be overcome. Several experiments of this type are in operation or in the design
phase:

• LIGO, VIRGO : d ∼ 3− 4 km, sensitive to hµν ∼ 10−23, has detected 10 events in
2015− 2018 which resulted in the Nobel prize in 2017 (Weiss, Barish & Thorne).
We will do some calculations regarding the sensitivity of these detectors in ex. 11
task 2.

• Space projects : Have the advantage, that longer distances can be covered by the
arms and that no geological noise (which is very hard to filter out) can disturb the
measurements. LISA pathfinder tested technology for space based interferometers
until 2017. LISA is a planned space based interferometer which will use this
technology and which is set to launch in 2034 with an arm length of ∼ 5 · 106 km.

• Several GW interferometers on earth have been proposed so far, the largest project
of this kind in the planning phase is the underground Einstein telescope, which is
set to be in a triangular shape (to allow for two independent interferometers, one for
low- and one for high frequencies). Three locations in Europe have been proposed
for the telescope, one of which is just a few kilometres from Aachen at the border
between the Netherlands and Belgium!
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Indirect detection: Some astrophysical systems like binary pulsars emit GWs. Hence
they lose energy, slowing the system down by a tiny amount over time. This can be
detected through through pulsar’s beams. Several of these binary pulsars have been
observed and the results match the theoretical prediction of a slow down due to GWs
very well. Hulse & Taylor were awarded the Nobel prize for this indirect confirmation
of the existence of GW in 1993.
The effect is called pulsar timing effect.

2.11.4. Production of gravitational waves

We have already looked at the almost flat case where we get plane waves:

hµν = Re

(ˆ
d3kAµν(k)eikαxα

)
In general if we have a vacuum around arbitrary objects we get a curvature and thus
a background metric which is not Minkowski (gµν 6= ηµν). Then � ≡ gµνDµDν has
eigenfunctions, which are more complicated than just eikαkα . hµν is then given by

hµν =

ˆ
d3kAµν(k) · Eigenfunction(kα, x

α)

Furthermore to find Aµν(k) we can only allow solutions with specific, non-trivial bound-
ary conditions. To demonstrate this we look at two systems A and B which are sur-
rounded by vacuum. Each non-zero contribution of GWs in the vacuum then induces a
non-zero contribution on the boundaries of A and B. To find the correct GWs one needs
to follow these steps:

1. Specify Tαβ 6= 0 inside A and B.

2. Solve Gαβ = 8πTαβ to find the metrics inside A and B.

3. Solve Gαβ = 0 to find the all solutions outside where goutsideµν =background
metric + arbitrary superposition of GW modes Aµν(k).
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4. Match ginsideµν and goutsideµν on the boundaries. This implies a unique solution for
Aµν(k)32.

Implications of Birkhoffs theorem on the production of GWs:

Birkhoffs theorem directly implies, that spherically symmetric sys-
tems cannot produce any gravitational waves (since their metric is
static). In fact one can show, that a quadrupole is needed (i.e. a
distribution of mass with the symmetry of a quadrupole, for proof
see [9]) with periodic motion. This also implies, that rotating
disks do not generate GWs.
Systems which fulfil the requirements are for example binary systems
(two objects rotating around each other). For the GW generated to have any significant
effect these objects need to be as massive as possible (white dwarfs, neutron stars, black
holes) and need to be in close proximity to each other.
GW produced by such systems can in principle travel infinite distances if not interrupted
by matter33.
Thes types of GWs are called astrophysical GWs and have been detected by LIGO
(2015), VIRGO (2017) and Hulse & Taylor (1974).
In the next semester we will talk about another mechanism which produces primordial
GWs.

32This procedure is similar to the methods used in electrostatics and electrodynamics to find the electric
potential and field. In fact we can often use the same mathematical tools, that we already used
there (Gauss law etc.).

33As we have seen above the electromagnetic interaction in matter generates heat when a GW passes
through it. This means, that the GW has to lose energy (and thus amplitude) when going through
matter.
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2.11.5. Remark on the degrees of freedom in GR

In general we call a field obeying to a wave equation of the form

�φ+ · · · = 0

a physical degree of freedom or propagating d.o.f.
In quantum field theory each independent propagating d.o.f. generates a physical parti-
cle (e.g. Higgs field→Higgs boson, Aµν →photon, . . . ).
In GR the field we are looking at is gµν with 10 independent d.o.f. (if the gauge is
fixed) but only two are propagating d.o.f.: The two polarization states of GWs (for
a given kµ). In attempts to quantize gravity34 these d.o.f. generate new particles called
gravitons which can exist even when there is vacuum everywhere (gµν = ηµν , T

αβ = 0).
All the other d.o.f. are not propagating d.o.f. but just used to compute the trajectories
of particles. Thus they do not generate new particles. This also becomes clear in
the fact, that these d.o.f. vanish when there is vacuum everywhere.

Furthermore one can show, that since GWs/gravitons are described by the tensor hµν
with two Lorentz indices they are spin 2 fields/particles.
Intuitively we can understand this if we recall, that spin N objects are invariant under
rotations by an angle of 2π

N
. Hence gravitons are invariant 2π

2
= π rotations. Indeed

if we think of the solutions + and × we see, that our ellipses are in fact invariant under
rotations by π.

34Unfortunately so far only the quantization of the perturbation hµν (and not of the background metric
gµν) and thus of the linear theory has been possible. This is due to the fact that a nonlinear theory
like GR leads to non-renormizable divergences for which no adequate solution has been found
yet.
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2.12. Einstein-Hilbert action

In classical field theory we have already seen (for more information on this topic see [10])

S︸︷︷︸
action

=

ˆ
d4x︸︷︷︸

4D volume
element

L︸︷︷︸
Lagrangian

( Φa︸︷︷︸
fields

, ∂µΦa︸ ︷︷ ︸
their

derivatives

, . . .︸︷︷︸
possibly higher
derivatives

)

In the following we will look at the case where the action only contains first deriva-
tives of the fields.

A small variation of the field is then{
φa → Φa + δΦa

∂µΦa → ∂µΦa = ∂µΦa + δ(∂µΦa)

This means that a small variation of the action is

δS =

ˆ
d4x

[
∂L
∂Φa

δΦa +
∂L

∂(∂µΦa)
δ(∂µΦa)

]

=

ˆ
d4x

 ∂L∂Φa
δΦa + ∂µ

(
∂L

∂(∂µΦa)
δΦa

)
︸ ︷︷ ︸

only depends on Lon boundary,
fixed by assumptions

−∂µ
(

∂L
∂(∂µΦa)

)
δΦa


where we treat Φa and ∂µΦa as independent functions. We can chose the boundary
conditions in such a way, that the second term vanishes and factor out δΦa which leaves
us with

δS =

ˆ
d4x

[
∂L
∂Φa

− ∂µ
(

∂L
∂(∂µΦa)

)]
︸ ︷︷ ︸
total variation of L w.r.t. Φa

δΦa

Classical mechanics: Among all possible trajectories the valid ones minimize the ac-
tion i.e. δS = 0 which leads to the Euler Lagrange equation as discussed in 2.6.1:

∂L
∂Φa

− ∂µ
(

∂L
∂(∂µΦa)

)
= 0

Quantum mechanics: All trajectories are possible but weighted according to their
action (path integral formalism).

We look at two classical examples:
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1. Scalar field in flat spacetime:

L =
1

2
∂µΦ∂µΦ− V (Φ) =

1

2
ηµν∂µΦ∂νΦ− V (Φ)

Using the Euler Lagrange equation this gives us

�Φ +
dV

dΦ
= 0

with � = ηµν∂µ∂ν . This is the well known Klein-Gordon equation.

2. Scalar field in curved spacetime: Since we know, that

S =

ˆ
dV L (2.4.3.1)

=

ˆ
d4x
√
−gL

for curved spacetime we get

S =

ˆ
d4x
√
−g︸ ︷︷ ︸

comoving volume
element

(
1

2
DµΦDµΦ− V (Φ)

)
=

ˆ
d4x
√
−g︸ ︷︷ ︸

Lagrangian density

(
1

2
gµνDµΦDνΦ− V (Φ)

)
︸ ︷︷ ︸

Lagrangian

where Dµ is the covariant derivative. Sometimes the word Lagrangian is used
for the Lagrangian density as well, especially in flat spacetime where the two are
equal.
In this case we get back the same Euler-Lagrange equation and thus the same
Klein-Gordon equation

�Φ +
dV

dΦ
= 0

if we define � = gµνDµDν . In this case the derivative contains the impact of
gravity on the trajectories.

3. GR in vacuum: In this case one can show, that

L =
√
−gR ⇒ SEH =

ˆ
d4x
√
−gR

⇒ δSEH =

ˆ
d4x
√
−g
(
Rµν −

1

2
gµνR

)
δgµν

where SEH is the Einstein Hilbert action which was derived by Hilbert in 1915.
From here we directly see the Euler-Lagrange equation which is

Gµν = 0

just as we expect in vacuum.
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Full theory From this we can finally construct a full (classical) theory of gravitation
and other forces with the action

S =

ˆ
d4x
√
−g
(
R

16πG
+ LM

)
(2.12.0.1)

where LM is the Lagrangian of all matter fields (fermions, gauge fields, Higgs, . . . ). The
variation w.r.t gµν then gives

δS =

ˆ
d4x

(√
−g Gµν

16πG
+
δ(
√
−gLM)

δgµν

)
δgµν

Comparing the term in brackets with the Einstein equation gives us a fundamental
definition of the energy momentum tensor:

Tµν ≡ −
2√
−g

δ(−
√
−gLM)

δgµν
(2.12.0.2)

Then the Euler Lagrange equation is just the Einstein equation.

Conclusion: We can express the full classical theory of gravity and other forces through
the action. In this case we get

• δS
δΦa
→equations of motion for fields

• δS
δgµν
→equation of motion for the metric
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In this section we will explore the evolution of the universe as a whole with time. Un-
til ∼ 20 years ago this field of physics had been (almost) purely theoretical since no
observations with sufficient sensitivity had been performed.

3.1. Newtonian Cosmology

Newton’s law already implied some kind of dynamic of the universe. If we assume
homogeneity this results in a uniform expansion or contraction of the universe due to
the initial ratio of kinetic and potential energy which is contained in the universe.
It turns out, that the concept of homogeneity is only compatible with either a static
distribution or with a linear velocity field of the form

~v = H~r

with a fixed parameter H which is called the Hubble parameter. Note, that this equation
just holds for a fixed time.
This velocity can also be redefined in terms of the redshift z which gives the famous
Hubble law :

zc = Hr

But what is the time evolution of expansion? We can calculate this from the Newtonian
theory using Gauss’ theorem if we assume either a finite distribution of mass or a
radius of interaction where inside there are gravitational interactions and outside not.
Then we can take Newton’s law

r̈(t) = −GM(r(t))

r2(t)

use the conservation of mass inside our Gaussian sphere (dM(r(t))
dt

= 0) and integrate the
equation (first multiplying it by ṙ(t)):

ṙ2(t)

2
=
GM(r(t))

r(t)
− k

2

where k is the constant of integration. We can then replace the mass M(r(t)) by the
volume of the sphere times the homogeneous mass density ρmass(t) and rearrange the
equation to (

ṙ(t)

r(t)

)2

=
8πG

3
ρmass(t)−

k

r2(t)
(3.1.0.1)



3.2.1. Cosmological backgrounds and perturbation

The quantity ṙ/r is called the rate of expansion. Since M(r(t)) is time-independent this
means, that the mass density needs to evolve as ρmass(t) ∝ 1

r3(t)
.

The behaviour of r(t) is dependent on the sign of k.

• k > 0: r(t) can grow at early times but always decreases at some point.

• k ≤ 0: r(t) expands forever.

So there is a critical value for the homogeneous mass density ρmass(t) which is

ρcrit =
3(ṙ(t)/r(t))2

8πG

If ρmass(t) is bigger than this value, the universe will re-collapse, otherwise it will keep
expanding forever.

The limitations of the Newtonian predictions In our previous calculations we as-
sumed that the universe is isotropic around us but did not check whether it is isotropic
everywhere (and thus homogeneous). Earlier we saw though, that homogeneous expan-
sion requires a linear law connecting distance and speed which is only fulfilled for k = 0.
So it seems like only the solution k = 0 is compatible with the cosmological principle.
Another big problem arises from the fact, that we used the additivity of speed for the
construction of our linear law. This cannot be applied at large distances though where
v ∼ c which happens around the characteristic scale called the Hubble radius RH :

RH = cH−1

at which the Newtonian expansion gives v = HRH = c

3.2. The Friedmann-Lemaître-Robertson-Walker
(FLRW) metric

3.2.1. Cosmological backgrounds and perturbation

To describe the universe as a whole we first need to think about the distribution of matter
and energy in it. The cosmological principle then leads us to the following assumption:

The exact description of the universe can be decomposed into two indepen-
dent problems:

• The background problem

• The inhomogeneity problem
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3.2.2. Coordinate choice

In the background problem one assumes, that in first approximation we can see the
universe as a smooth distribution of matter (i.e. we can average over the small
inhomogeneities like stars etc.). Then we can view all matter in the universe as a cos-
mological fluid and compute its dynamics.
The background problem consists of first order (or sometimes second order) perturba-
tions, which can describe the large-scale structure or the CMB.
For the formation of small scale structures (like galaxies, stars etc.) this approach does
not work since these are fully non-linear problems. They are usually solved through
many-body Newtonian simulations or similar approaches.

3.2.2. Coordinate choice

The FLRW model is the most general solution in GR under the assumption of a back-
ground universe which is homogeneous and isotropic1.
Under this assumption we can restrict the energy density ρ in such a way, that it is only
a function of time, but not of space:

ρ(xµ) = ρ(x0)

From this we immediately notice, that this means, that the notion of homogeneous and
isotropic is not a coordinate-independent property. In particular this means, that
a particular definition of time is preferred or more precisely a particular time-slicing.
A rescaling of t → t′(t) does not violate homogeneity but a mixing of time and space
does.

The easiest way to construct such a system of coordinates in a homogeneous universe
is to start from an initial homogeneous hypersurface and to assign to it a time coordinate
t1 and an arbitrary spatial direction. We can then use three arguments to map the whole
spacetime:

1. If we place an observer at rest in our coordinate system dxi

dx0 = 0 since due to
homogeneity there is no bulk velocity due to some kind of force.

2. The time basis vector ~e0 = ~et must be orthogonal to the initial hypersurface in
each point since otherwise there would be a preferred direction.

1Originally Einstein and later De Sitter considered static solutions of the Einstein equation but these
were found to not describe the universe correctly.
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3.2.3. Curvature

3. If we let each observer be free falling and measure their proper time, we can
define the coordinates at a different time in such a way, that at these coordinates
the clocks of all observers show the same proper time t2

The first argument allows us to map the whole space while not mixing space and time,
the second one shows, that

e0 · ~ei = 0 ⇔ g0i = δµ0 gµνδ
ν
i = 0, i = 1, 2, 3

The third argument can then be used to assign spacial coordinates to any point in time.
This type of set of coordinates is called comoving coordinates.

Using proper time t we can then write down the explicit form of the metric (in non-
natural units):

ds2 = −c2dt2 + gijdxidxj (3.2.2.1)

gij is furthermore restricted in the sense, that it must preserve homogeneity and isotropy.
Its explicit form will be given by eq. (3.2.3.2).

Comments:

• As mentioned above a redefinition of time t→ t′(t) preserves homogeneity although
the time coordinate does not correspond to the proper time. This is sometimes
useful to calculate specific things, although if we want to calculate the actual time
an observer measures we always need to take proper time.

• An internal redefinition of spacial coordinates xi → xi
′
(xi) will of course preserve

homogeneity. In the following we will mostly stick to spherical coordinates.

• A general change of coordinates mixing space and time does not preserve homo-
geneity. In particular this means, that an observer which moves w.r.t. the comov-
ing coordinates does not see the universe as homogeneous (he sees a blueshift in
one and a redshift in the other direction). Therefore there is a global comoving
frame.

3.2.3. Curvature

To specify gij we need to use the consequences which we obtain when assuming homo-
geneity. Let us consider two small comoving sticks SA and SB with arbitrary rotation
and location. We assume that the ends of these sticks coincide with the locations of
comoving observers. We call their position coordinates xµA, x

µ
B and their vector coordi-

nates dxµA, dx
µ
B, i.e. the sticks stretch from xiA − dxiA/2 to xiA + dxiA/2 and xiB − dxiB/2

to xiB + dxiB/2 respectively. Hence their squared proper lengths just read:

ds2
A = gij(x

µ
A)dxiAdx

j
A ds2

B = gij(x
µ
B)dxiBdx

j
B
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3.2.3. Curvature

Then between two arbitrary times t1 and t2 the relative change in the proper length
should vary by a constant factor independent of orientation and location:

gij(t2, x
k
A)dxiAdx

j
A

gij(t1, xkA)dxiAdx
j
A

=
gij(t2, x

k
B)dxiBdx

j
B

gij(t1, xkB)dxiBdx
j
B

≡ f(t2, t1)

which simplifies to

gij(t2, x
k
A)

gij(t1, xkA)
=
gij(t2, x

k
B)

gij(t1, xkB)
= f(t2, t1)

so at any arbitrary times t1, t2 for fixed coordinates xk we get the simple relation

gij(t2, x
k) = f(t2, t1)gij(t1, x

k)

From this we can conclude, that gij can only depend on time through a global scale
factor f(t, t1) (where we interpret t2 as the “running” time t and t1 as a fixed reference
time). Since f appears in factor of squared quantities and needs to be positive to
guarantee, that proper lengths remain positive at all times it is preferable to refer to the
square root a(t) ≡

√
f(t, t1) which we call scale factor.

Hence we have proven, that the spatial part of our metric can only depend on time
through a global scale factor a(t):

gij = a(t)2g̃ij

where g̃ij is time independent.
The only thing left to do now is to find a form for g̃ij.
This is fairly easy since there are only 3 types of metrics with constant curvature every-
where2:

1. Flat, euclidian space

2. 3-Sphere

3. 3-Hyperboloid

Conveniently choosing polar coordinates we can express all three cases through a single
parameter k ∈ R:

dl2 = g̃ijdxidxj =
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dϕ2) (3.2.3.1)

where

1. k = 0 Euclidian universe (which is called flat universe)

2This is required to preserve homogeneity.
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3.2.3. Curvature

2. k > 0 The universe is a 3-sphere and thus has a finite volume. It is only defined
in a finite range 0 ≤ r < rc. This type of universe is called closed universe

3. k < 0 The universe is a 3-hyperboloid and negatively curved. This is called an
open universe.

In the last two cases we can define the radius of curvature (of spacetime) as

Rc =
1√
|k|

Hence we have found the most general solution of a universe, which obeys the cosmo-
logical principle, the FLRW-metric:

ds2 = −c2dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dΩ)

]
(3.2.3.2)

If we look at the spatial part of this metric, we immediately see, that it just corresponds
to the line element which we computed in (3.2.3.1) times the scale factor a(t). Since we
can express all lengths by integrating the line-element over a path in three-dimensional
space we can also express a 3-dimensional, physical radius of curvature which is just

Rc,physical(t) =
a(t)√
|k|

Comments:

• by rescaling r → r
√
|k| and a(t) → a(t)√

|k|
the metric has the exact form given in

(3.2.3.2) but we can restrict k to the three values ±1, 0

• As we will show in ex. 12, task 2 observers at rest with the cosmological fluid
stay at rest, i.e. all trajectories parametrized byxi = xiM = const are solutions
of the geodesic equation. Nevertheless the proper distances between points are
still increasing or decreasing. Thus the universe expansion is not described by the
proper motion of particles any more as it was the case in Newtonian cosmology
but rather by the evolution of spacetime itself.

• As we have seen the FLRWmetric describes a curved spacetime with two different
kinds of curvature:

– The spatial curvature ±a(t)√
k
at each time

– The spacetime curvature described by the evolution of a(t)

While the first curvature is very intuitive the second one is a bit more subtle but
we will see the effect of both in effects like the trajectories of photons.
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3.3.1. Photon geodesics

• Using the scale factor we can define an actual radius of curvature. The Hubble
radius

RH(t) = c
a(t)

ȧ(t)

• For the case k = 0 and a = const we could just redefine the coordinate system
with r, θ, φ→ ar, θ, φ we just get back the Minkowski metric, which underlines the
fact, that the curvature manifests itself as k 6= 0 for spatial curvature and ȧ 6= 0
for the remaining spacetime curvature.

• Sometimes equations become simpler when we redefine the time to dt = a(t)dτ ,
so the metric reads:

ds2 = a2(τ)

(
−c2dτ 2 +

[
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dϕ2)

])
This metric exhibits conformal symmetry, thus τ is called conformal time in op-
position to the proper time t which is sometimes also called the cosmological time.

3.3. Light propagation in the FLRW universe

3.3.1. Photon geodesics

We know, that in GR photons move along geodesics with the speed of light. Hence in
an infinitesimal interval dt the photons move by dl2 = c2dt2. Hence we can integrate
dl = ±cdt to get macroscopic distances.
If we consider a photon along a straight geodesic (a free photon) and we assume, that
we are a comoving observer, we can choose the origin of our spherical FLRW universe
to coincide with our position3. Since we require isotropy the photon then still needs to
travel along a straight line, so in dr-direction, which means, that we can express the
distance travelled by

ˆ r

re

− dr√
1− kr2

=

ˆ t

te

c dt
a(t)

The solutions to this equation are indeed a solution of the geodesic equation. This
means that if we put ourselves at r = 0 in the FLRW universe we can further simplify
the equation above. Additionally the observer sees the photon at a time t0 which can
be implicitly deduced from re and te through the important equation

ˆ 0

re

− dr√
1− kr2

=

ˆ t0

te

c dt
a(t)

(3.3.1.1)

Comments:
3This is just done to simplify calculations, it does not put us in a special position in our universe
(apart from the fact, that we are at rest with the cosmological fluid).
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3.3.2. Redefining the redshift

• The ensemble of points (te, re, θ, φ) for which (3.3.1.1) holds define our past-light
cone.

• We can already see the physical interpretation of the conformal time here since
the right side corresponds to τr − τe

3.3.2. Redefining the redshift

Again we place ourselves as a comoving observer at the origin of coordinates. We pretend
to observe a galaxy located at (re, θe, φe) emitting light at a given frequency νe = c/λe.
with a period dte ≡ 1/νe. When we compute their trajectory with (3.3.1.1) we receive
it with a frequency νr = c/λr = 1/dtr so

ˆ 0

re

− dr√
1− kr2

=

ˆ tr

te

dt
a(t)

=

ˆ tr+dtr

te+dte

dt
a(t)

Rearranging the second equality gives
ˆ te+dte

te

dt
a(t)

=

ˆ tr+dtr

tr

dt
a(t)

so we get in very good approximation:

dte
a(te)

=
dtr
a(tr)

Remapping this to the emission and reception of wavelengths gives

λr
λe

=
dtr
dte

=
a(tr)

a(te)

This is in fact the answer which we would intuitively expect since we already know,
that wavelengths become longer when the scale factor increases. Hence in the FLRW
universe the redshift is given by

z =
∆λ

λ
=
λr − λe
λe

=
a(tr)

a(te)
− 1

In other words if we observe an object at our time t0 the observed redshift is

z =
a(t0)

a(te)
− 1 (3.3.2.1)

Comments:

• Unlike in Newtonian cosmology where z = v/c here the redshift is not restricted
to values < 1 since the scale factor a can be arbitrarily large without violating
the fundamental principles of GR
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3.3.3. Redefining the Hubble parameter

• Since there is a global comoving frame this equation only holds exactly if the
observer is exactly at rest w.r.t. the comoving frame. In reality this is never the
case, so we need to take this into account as an additional contribution coming
from the Doppler-formula from SR (see 1.6.8). These velocities rarely exceed values
of c/1000 so the correction is O(10−3) and can be neglected for large distances. It
is however dominant for small distances.

3.3.3. Redefining the Hubble parameter

The Hubble parameter in the FLRW universe can be derived by taking the line-element
and looking at the Newtonian limit, which should read

z =
v

c
=
HL

c

where L denotes to the physical distance to the object. To show this let us assume, that
we receive a light ray from a nearby point at t0 so it was emitted at t0− dt. In the limit
of small dt the equation of propagation of light then gives

L ≈ a(t0)|dr|√
1− kr2

= c dt

while the redshift of the galaxy is

z =
a(t0)

a(t0 − dt)
− 1 ≈ a(t0)

a(t0)− ȧ(t0)dt
=

1

1− ȧ(t0)
a(t0)

dt
− 1 ≈ ȧ(t0)

a(t0)
dt

and by combining the two equations above this gives

z ≈ ȧ(t0)

a(t0)
· L
c

Hence ȧ(t0)
a(t0)

plays the role of the Hubble parameter at any given time. This means, that

H(t) =
ȧ(t)

a(t)
(3.3.3.1)

Comments:

• We will often use the current value of the Hubble constant which we will call
H0.

• While at small distances we recover the linear Hubble law, which links distance
and velocity (or redshift) but this approximation is only valid for small distances.
At larger distances we have to find a new definition of distance, which will be
discussed in the following.
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3.3.4. Distances

Comoving distance

As above we assume, that we are at the origin of a FLRW universe with spherical
coordinates at time t0 and observe an object at (te, re, θe, φe).
The easiest way to define a distance is by assuming, that the object we observe is
comoving so at the time when we observe it it should be at (t0, re, θe, φe). We can then
compute the distance on a constant time-hypersurface with t = t0 and just integrate the
length-element:

d =

ˆ re

0

dl = a(t0)
dr√

1− kr2

This is a unique definition of distance up to the normalization factor a(t0) which we can
choose to be 1. In this case the distance d coincides with the comoving distance χ:

χ(re) ≡
ˆ re

0

dr√
1− kr2

(3.3.4.1)

which can be explicitly integrated for the three possible cases for k:

χ(r) =


sin−1(r) if k = 1

r if k = 0

sinh−1(r) if k = −1

Comments

• We can also find an explicit form for χ if we do not restrict k to the values ±1, 0
(see ex. 12, task 3).

• It is useful to define

fk(x) =


sin(x) if k = 1

x if k = 0

sinh(x) if k = −1

so that r = fk(χ).

• From (3.3.1.1) follows, that χ(r) is equal to the conformal age of the object:

χ(r) =

ˆ t0

te

c dt
a(t)

= c(τ0 − τe)

which means, that in natural units conformal time and comoving distance are the
same.
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3.3.5. Angular diameter distance

• Although the comoving distance is a very nice definition of distance since it is
independent of time it is not something we can measure. This motivates the
definition of other, measurable distances.

The three things which enable us to measure distances, since we cannot determine them
directly are the redshift, the angular diameter of objects of known size and the
luminosity of standard candles. In the next two sections we will find relations between
the redshift and the other two, so effectively connections between all three types of
measurements.

3.3.5. Angular diameter distance

For objects of known physical size dl we can measure their angular diameter dθ and
calculate the distance through dl = d× dθ which we call the angular diameter distance:

dA ≡
dl
dθ

In Euclidian space with linear expansion we can easily find a relation between angular
diameter distance and redshift:

dA = d =
c

H0

z

For the FLRW universe we need to additionally take into account the bending of light
rays which implies, that the physical size dl (evaluated at te) of an object orthogonal to
the line of sight is

dl = a(te)re dθ

where te is the time of emission and re the comoving coordinate of the emitter.
Using (3.3.2.1) this give

dA = a(te)re = a(t0)
re

1 + ze

We can then replace re with (3.3.4.1) which yields:

dA =
a(t0)

1 + ze
fk

(ˆ t0

te

c dt
a(t)

)
which if we replace dt by dz gives the important angular diameter-redshift relation4

dA =
a(t0)

1 + ze
fk

(ˆ ze

0

c dz
a(t0)H(z)

)
(3.3.5.1)

4This is a handy relation to test the validity of cosmological models if we already know the physical
size of objects. Luckily there are such objects called standard rulers
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3.3.6. Luminosity distance

3.3.6. Luminosity distance

If we know the absolute luminosity of objects we can infer their distance from their
apparent luminosity. In a Euclidian universe the relation between apparent and absolute
luminosity ist just l = L

2πd2 . Although geometry is not Euclidian in cosmology we will
stick to that definition:

dL ≡
√

L

2πl
(3.3.6.1)

the effect of curvature manifests itself through the different definition of the relation
between apparent and absolute luminosity in cosmology:

l =
L

4πa2(t0)r2
e(1 + ze)2

so

dL = a(t0)re(1 + ze) (3.3.6.2)

We can again rewrite this equation in terms of the redshift which gives the luminosity
distance-redshift relation:

dL = a(t0)(1 + ze)fk

(ˆ ze

0

c dz
a(t0)H(z)

)
(3.3.6.3)

Comments

• We can easily see the relation between angular distance and luminosity distance:

dL = a(t0)re(1 + ze) = a(te)re(1 + ze)
2 = (1 + ze)

2dA

• In the limit z → 0 the three definitions of distance are equivalent and reduce to the
usual definition d = c

H0
z, so at small redshifts we gain no additional information

from the measurement of any of these quantities (apart from measuring H0)

3.4. The Friedmann Law

The goal of this section is to link the curvature k and the scale factor a(t) to the source
of curvature: The matter density.

3.4.1. Einstein’s equation

From 2.8 we already know the relation between curvature and matter in any metric:

Gµν = 8πGTµν
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3.4.1. Einstein’s equation

The Einstein tensor Gµν can be directly computed from the metric using its Christoffel
symbols. This yields the (unsurprisingly simple) result, that the Einstein tensor is
diagonal and G1

1 = G2
2 = G3

3. This is a direct consequence of the invariance under
rotations which is a requirement of isotropy (see ex. 3, task 1).
As we have already seen the stress energy tensor of a perfect fluid takes exactly this
form. In particular for such a fluid we can use (1.7.2.2):

Tαβ = (ρMCRF + pMCRF)UαUβ + pMCRFη
αβ

where we know, that in an MCRF (comoving frame) Uµ = (U0, 0, 0, 0). Furthermore in
the case of the FLRW g00 = −1 so

−1 = ~U · ~U = U0g00U
0 ⇒ U0 = 1, Uν = −δ0

ν

which allows us to express the SET explicitly:

T µν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


This underlines the fact, that the FLRW model is only compatible with a perfect cos-
mological fluid inhabiting the universe.

The first component of the Einstein tensor reads (not derived here)

G00 = 3

[
k

a2
+

(
ȧ

a

)2
]

This is an interesting expression to study. It is in fact the sum of the squared spatial
radius Rc(t) = ± a√

|k|
and the inverse squared Hubble radius RH(t) = ȧ

a
. This emphasizes

what we already learned in 3.2.3 about the different types of curvature abundant in the
universe5.
Using the Einstein equation (with one index up and one down):

−G0
0 = −8πGT 0

0

we can rewrite the above:

3

[
k

a2
+

(
ȧ

a

)2
]

= 8πGρ

which when rearranged gives the famous Friedmann equation

H2 =

(
ȧ

a

)2

=
8πG

3
− k

a2
(3.4.1.1)

5The additional factor 3 appears due to the three spatial dimensions.
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3.4.2. Energy conservation

Comments:

• We can rewrite ρ after thinking about the implications of the energy content con-
tained in ρ. We will do this in the next section.

• If we assume that all mass in the universe is non-relativistic, so p2 � m2 the
Friedmann law looks exactly like the Newtonian expansion law (3.1.0.1) with a(t)
having the role of r(t).
Of course they are very different though since

1. In the Newtonian model the expansion leads to velocities > c, in the FLRW
model not

2. The Newtonian model forbids k 6= 0 since it violates isotropy, in the FLRW
model it is allowed.

3.4.2. Energy conservation

From the Bianchi identities the Einstein equation implies

Gµ
ν;µ = T µν;µ = 0

For the first component this is just an equation of energy conservation.
By explicitly computing the Christoffel symbols and using (2.5.2.2) and (2.5.3.1) one
finds, that this just yields:

ρ̇ = −3
ȧ

a
(p + ρ) (3.4.2.1)

Hence the dilution of energy as the universe expands depends on the pressure6. In
homogeneous cosmology we usually look at the two limiting cases:

• Non-relativistic matter: In case of slow moving matter we neglect any kinetic
energies which implies p = 0 (a comoving box enclosing the fluid would not feel
any pressure), hence7

ρ̇ = −3
ȧ

a
ρ ⇒ ρ ∝ a−3

• Ultra-relativistic matter: In this case we know from statistical mechanics (see
[1] or [5]), that p = ρ

3
. Hence

ρ̇ = −3
ȧ

a

(
1 +

1

3

)
= −4

ȧ

a
ρ ⇒ ρ ∝ a−4

This can be understood if we remind ourselves, that the energy density of photons
is E/V . The dilution is V ∝ a3 and E ∝ a−1. Hence ρ ∝ a−4.

6More precisely on the equation of state p(ρ).
7This result is obvious since V ∝ a3 ⇒ ρ ∝ a−3
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3.4.3. Cosmological constant

The last thing to discuss in the Friedmann equation is the cosmological constant. This is
just an integration constant which can be added on the left side of the Einstein equation
without violating any principle:

Gµν + Λgµν = 8πGTµν

The constant Λ cannnot depend on time or space and is called the cosmological
constant. If we move it from the left side of the equation to the right we see, that the
cosmological constant is equivalent to a homogeneous fluid with the SET

T̃ µν = − Λ

8πG
δνµ

In opposition to matter or radiation this fluid has ρ = −p which implies, that ρ̇ = 0 so
the energy does not dilute.
While this had no good explanation in Einstein’s times the vacuum energy of QFT is
a good candidate for this this predicts a way larger cosmological constant then measured
though, so it remains a bit of a mystery.

3.4.4. Possible scenarios for the history of the universe

If we write the Friedmann law with all possible contributions discussed so far (sorted by
the speed of dilution) we get

H2 =

(
ȧ

a

)2

=
8πG

3
ρR +

8πG

3
ρM −

k

a2
+

Λ

3

where ρR denotes to the radiation- and ρM to the matter density. since they evolve w.r.t.
a with a−4, a−3, a−2 and a0 if the scale factor keeps growing and assuming that all four
terms contribute we get a distinct order of domination of each term, which is best
illustrated in the graph below:

If we furthermore assume that one of the parameters strongly dominates over the
others we can compute the behaviour of the scale factor, Hubble parameter and Hubble
radius in each of the stages:
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3.4.5. Cosmological parameters

Dominating
contribution

(
ȧ
a

)2 ∝ a(t) ∝ H(t) RH(t)
Type of
curvature

Radiation a−4 t1/2 1
2t

2t
decelerated
expansion

Matter a−3 t2/3 2
3t

3
2
t

decelerated
expansion

Negative
curvature a−2 t 1

t
t

linear
expansion

Positive
Curvature a−2 t 1

t
t recollapse

Cosmological
constant a0 = const exp(Ht) 1

RH
=
√

Λ/3
acclerated
expansion

3.4.5. Cosmological parameters

Since we can only measure the quantities in the Friedmann equation today it is more
useful to rewrite it in terms of H0 instead of an arbitrary H(t). If we then divide by H2

0

we get

1 =
8πG

3H2
0

(ρR,0 + ρM,0)− k

a2
0H

2
0

+
Λ

3H2
0

(3.4.5.1)

where 0 indicates, that we evaluate the quantities today. From this we can compute the
whole evolution of the universe.

A nice side-effect of this formulation is, that by construction the four terms in this
equation add up to 1 and hence are the relative contribution to the present universe
expansion. Hence it is useful to give each term a symbol:

ΩR =
8πG

3H2
0

ρR,0

ΩM =
8πG

3H2
0

ρM,0

Ωk = − k

a2
0H

2
0

ΩΛ =
Λ

3H2
0

which simplifies the matter budget equation to

ΩR + ΩM + Ωk + ΩΛ = 1

An important consequence of this is, that the universe is flat if

Ω0 ≡ ΩR + ΩM + ΩΛ = 1
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which means, that at any time the total density of matter, radiation and Λ must be
equal to the critical density

ρc(t) =
3H(t)2

8πG
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A. Proofs

A.1. Bianchi identities

There are two Bianchi identities1 and two contractions of the second Bianchi identity,
which we call contracted- and twice contracted Bianchi identity. While the first one is
very straight forward to prove, the second one is a bit more subtle. We will present a
way of proving both:

First Bianchi identity:
we want to prove, that

Rα
[βµν] := Rα

βµν +Rα
µνβ +Rα

νβµ = 0

The proof becomes trivial if we simply write out the representation of the Riemann-
tensor by the Christoffel symbols:

Rα
βµν = Γαβν,µ − Γαβµ,ν + ΓασµΓσνβ − ΓασνΓ

σ
µβ

Rα
µνβ = Γαµβ,ν − Γαµν,β + ΓασνΓ

σ
βµ − ΓασβΓσνµ

Rα
νβµ = Γανµ,β − Γανβ,µ + ΓασβΓσµν − ΓασµΓσβν

which altogether gives us for the sum:

Rα
[βµν] = (Γαβν,µ − Γανβ,µ) + (Γαµβ,ν − Γαβµ,ν) + (Γανµ,β − Γαµν,β)

+ (ΓασµΓσνβ − ΓασµΓσβν) + (ΓασνΓ
σ
βµ − ΓασνΓ

σ
µβ) + (ΓασβΓσµν − ΓασβΓσνµ)

= 0 �

where in the last step we have used the symmetry of the Christoffel symbols.

Second Bianchi identity:
We want to show, that

Rαβ[µν;λ] := Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0 (A.1.0.1)

This identity can be shown using the first Bianchi identity but this is a very tedious
task, so we will show it using some considerations of the Riemann-tensor in a LPIF. For
this we first switch to a LPIF, so that

gαβ = ηαβ +O(δ(xα)2)

1although the first one was discovered by Ricci.
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In this frame all Christoffel symbols vanish, so

0
(2.5.5.1)

= gαβ;γ = gαβ,γ − gασΓσβγ − gσβΓσαγ = gαβ,γ

⇒ gαβ;γ = gαβ,γ

Note, that however gαβ,γε 6= 0 in general. In particular this also means, that in the LPIF,
the covariant derivative of the Riemann-tensor is equal to its partial derivative:

Rαβµν;ε = Rαβµν,ε + terms involving Γ

= Rαβµν,ε

This means, that the only thing left to do is to represent the Riemann-tensor in terms
of the metric and do the permutations:

Rαβµν = gασ
(
Γσβν,µ − Γσβµ,ν + ΓσγµΓγνβ − ΓσγνΓ

γ
µβ

)
⇒ Rαβµν,ε = gασ,ε︸︷︷︸

=0

(. . . ) + gασ(Γσβν,µε − Γσβµ,νε)

=
1

2
gασ
(
gσξ(gβξ,ν + gξν,β − gβν,ξ),µε − gσξ(gβξ,µ + gξµ,β − gβµ,ξ),νε

)
This means, that we have expressed the Riemann-tensor solely through partial deriva-
tives of the metric, which commute. We can thus write

Rαβ[µν;ε] = Rαβ[µν,ε] = gασ

(Γσβν,µε − Γσβν,εµ)︸ ︷︷ ︸
=0

+ (Γσβµ,εν − Γσβµ,νε)︸ ︷︷ ︸
=0

+ (Γσβε,νµ − Γσβε,µν)︸ ︷︷ ︸
=0


= 0 �

Contracted Bianchi identity
We want to show, that

Rβν;ε +Rα
βνε;α −Rβε;ν = 0

This is simply done by contracting the second Bianchi identity with the metric gαµ and
use, that we can pull the metric through the derivative since gαβ;ε = 0:

0 = gαµRαβµν;ε︸ ︷︷ ︸
=Rβν;ε

+ gαµRαβεµ;ν︸ ︷︷ ︸
=−gαµRαβµε;ν=−Rβε;ν

+ gαµRαβνε;µ︸ ︷︷ ︸
=Rµβνε;µ=Rαβνε;α

= Rβν,ε +Rα
βνε;α −Rβε;ν �
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Twice contracted Bianchi identity We do another contraction of the indices in the
contracted Bianchi identity and show, that

2 · Rα
ν;α −R;ν = 0

We multiply the contracted Bianchi identity with gβε and get:

0 = gβεRβν;ε + gβεRα
βνε;α − gβεRβε;ν

= gβεRβν;ε + gβεgασRσβνε;α −R;ν

= gβεRβν;ε + gασRσν;α −R;ν

= 2 · gβεRβν;ε −R;ν

= 2 · Rα
ν;α −R;ν �

A.2. Number of independent components of the
Riemann-tensor

We want to prove, that the Riemann tensor has only 20 independent components. To
do this we use the symmetries

Rαβ µν = −Rβα µν
= −Rαβ νµ = +Rµν αβ

and the first Bianchi-identity (see A.1). We look at the distinctive components:

• All components, with the first two or last two indices being the same vanish, since
they are their own negative:

Rαα µν = −Rαα µν = 0

So all components of the form Rαααα, Rαααβ, Rααµν vanish.

• There are 6 independent components of the form Rαβαβ, which are the number of
possibilities to arrange 2 indices which can take 4 values (

(
4
2

)
= 6)

• There are 12 independent components of the form Rαβαµ, which are

R0102 R0103 R0203

R1213 R1013 R1012

R2123 R2021 R2023

R3132 R3031 R3032

• Lastly we have 3 independent components if all indices are different:

R0123; R0312; R0231

But because of the first Bianchi-identity Rα[βµν] = 0 these three degrees of freedom
reduce to two.

Therefore we have 6 + 12 + 2 = 20 independent components. �
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B. The Schwarzschild solution

B.1. Trajectories of test particles

Massive particle

While there is no general, analytical solution to the differential equation (2.9.2.1) we can
look at the behaviour of

Ṽ 2(r) ≡
(

1− 2M

r

)(
1 +

L̃2

r2

)

We differentiate with respect to r and find

dṼ 2

dr
=
L̃2(6M − 2r) + 2Mr2

r4

and find the extrema at

r =
L̃2

2M
±
√

L4

4M2
− 3L̃2 (B.1.0.1)

which means, that for L2 < 12M2 we get no solution and for L2 > 12M2 we get two
solutions. From the second derivative we see, that the extreme with the − sign is a
maximum and the other one a minimum.
We can then plug rmin and rmax in the original equation and get:

V 2
max = 2L2

(
L2 − 4M2 +

√
L2 (L2 − 12M2)

M2
M

)2

·

(
L2 +

√
L2 (L2 − 12M2)

M2
M

)−3

V 2
min = 2L2

(
L2 − 4M2 −

√
L2 (L2 − 12M2)

M2
M

)2

·

(
L2 −

√
L2 (L2 − 12M2)

M2
M

)−3

Massless particle

We start with the equation (2.9.4.1):

V 2(r) =

(
1− 2M

r

)
L2

r2



3.4.5. Cosmological parameters

If we take the derivative we get

dV 2

dr
=

2

r3
+

6M

r4

which means, that there is a single maximum at

rmax = 3M

with

V 2
max =

L2

27M2
⇒ Vmax =

L√
27M
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