
Accelerating Bayesian Inference of
expensive Likelihoods with

Gaussian Processes

von

Jonas Elias El Gammal

Masterarbeit in Physik

vorgelegt der

Fakultät für Mathematik, Informatik und Naturwissenschaften

der

RWTH Aachen

im Dezember 2020

angefertigt im

Institut für Theoretische Teilchenphysik und Kosmologie (TTK)

bei

Prof. Dr. Julien Lesgourgues

Abstract
Numerically approximating multidimensional posterior distributions can be very ex-
pensive when evaluating the likelihood function involves expensive numerical com-
putation. At the same time many likelihoods in physics show a "speed hierarchy"
between the different dimensions of the parameter space which means that recomput-
ing the likelihood function is much more expensive when changing some parameters
than others. This naturally arises when some of these parameters come from theo-
retical models while others are associated to the data. Recently some attempts have
been made at fast Bayesian inference using Bayesian quadrature [1, 2, 3] to reduce
the number of samples required for mapping the posterior distributions drastically.
While this approach works well in low dimensions it becomes prohibitively expen-
sive if the number of dimensions exceeds d & 10. Additionally these approaches
cannot take advantage of the aforementioned speed hierarchy in the likelihood. In
this thesis we develop an algorithm which mitigates these problems and improves
on the current state of the art by (i) introducing a novel acquisition function which
is well suited to performing Bayesian quadrature of log-probability distributions (ii)
accelerating the Kriging believer [4] batch acquisition algorithm with blockwise ma-
trix inversion [5] and (iii) Proposing an algorithm which can take advantages of
speed hierarchies by marginalizing nuisance parameters with the PolyChord nested
sampling algorithm [6, 7]. We test these algorithms on gaussian toy likelihoods and
real cosmological likelihoods and report a decrease in wall clock time of up to several
orders of magnitude for mapping the posterior space.

Erstgutachter und Betreuer

Prof. Dr. Julien Lesgourgues
Institut für Theoretische Teilchenphysik
und Kosmologie (TTK)
RWTH Aachen University

Zweitgutachter

Prof. Dr. Felix Kahlhoefer
Institut für Theoretische Teilchenphysik
und Kosmologie (TTK)
RWTH Aachen University

Contents
1 Introduction 1

2 An introduction to Bayesian inference 3
2.1 Bayesian inference . 3

2.1.1 Bayes theorem . 3
2.1.2 Bayes theorem for probability distributions 4
2.1.3 Priors . 5
2.1.4 Numerical considerations . 6

2.2 Markov Chain Monte Carlo . 6
2.2.1 Markov Chains . 6
2.2.2 Markov Chain Monte Carlo . 7

2.3 Nested Sampling . 8
2.4 Typical computational complexity . 12

3 Gaussian Processes 15
3.1 Concept . 15

3.1.1 Conditioning . 16
3.2 The kernel function . 18

3.2.1 Composite kernels . 23
3.2.2 Higher dimensionality . 24
3.2.3 Tuning the kernel’s hyperparameters 24

3.3 GP Regression . 26
3.4 Bayesian quadrature . 27

3.4.1 Active sampling . 29

4 Bayesian quadrature for probability distributions 33
4.1 Why Bayesian quadrature? . 33
4.2 Power reduction operation . 34
4.3 Appropriate acquisition functions . 36
4.4 Preprocessing . 38
4.5 Parallelizing the algorithm . 40
4.6 Convergence criterion . 43
4.7 The problem with infinity . 45
4.8 Preserving bayesianity . 46
4.9 Experiments . 47

5 A hybrid Nested Sampling/GP approach 55
5.1 Taking advantage of speed hierarchies . 55
5.2 The method . 57
5.3 Efficiency . 60
5.4 Experiments . 62

6 Conclusion & Outlook 67

References 73

1 INTRODUCTION

1 Introduction

Bayesian inference is one of the main tools which is used in science for comparing theories
to data and for quantitatively analysing the parameters which govern these theories.
Doing these analyses does however involve integrating the posterior distribution along
one or multiple axes which usually has to be done numerically.
In the last decades the Metropolis Hastings MCMC algorithm has become one of the
main methods for performing these numerical integrations as it is easy to implement,
robust and scales well with the number of dimensions. It does however need a large num-
ber of posterior evaluations & 103 to correctly recover the shape of the posterior. At the
same time calculating likelihood and posterior distributions for comparing theoretical
models to data can be computationally very expensive as it often involves heavy numer-
ical calculations such as integrals, differential equations or simulations. This coupled
with the high number of evaluations needed for MCMC poses a challenge to scientists
to the point where it makes some analyses outright impossible due to the computational
overhead involved.
This problem has recently gained a lot of attention by the machine learning community
where numerous proposals for more efficient algorithms have been made. One of these
algorithms which is particularly promising is Bayesian quadrature (BQ) which relies on
Gaussian Process (GP) regression which is a Bayesian approach to non-parametric in-
terpolation that has been applied to numerous machine learning problems in the past.
This powerful approach needs less samples from the posterior to converge to the cor-
rect distribution but this unfortunately comes at the expense of added computational
overhead and bad scaling with the number of dimensions. Furthermore these algorithms
cannot exploit speed hierarchies (i.e. the difference in computation times when chang-
ing different parameters) that are inherent to many likelihoods in physics and that arise
when an expensive to compute theoretical model is compared to data. These practical
disadvantages have so far limited BQ to a small number of select problems and MCMC
is still considered the gold standard in Bayesian inference.
The goal of this thesis is to develop a robust framework for BQ which extends the useful
range of this approach to moderately high dimensions while limiting the computational
overhead. Furthermore we will try to take advantage of the aforementioned speed hier-
archies to increase performance further.
Chapter 2 will be a brief review of Bayesian inference where most of the relevant ter-
minology and notation is introduced along with a brief discussion of the numerical con-
siderations that have to be made when performing Bayesian inference. This is followed
by the introduction of two of the most commonly used, state of the art algorithms for
Bayesian inference, Metropolis Hastings MCMC and nested sampling. We discuss the
numerical implications of these algorithms as well as the number of posterior evaluations
required for convergence.
In chapter 3 we explain the concept of GPs with a focus on providing intuitive expla-
nations in addition to establishing the relevant notation. This is followed by a detailed
discussion of the role of the kernel function and the description of the GP regression
algorithm. Next the idea of BQ is introduced together with active sampling.
Since our goal in this thesis is to perform BQ on probability distributions, chapter 4 will

1

1 INTRODUCTION

focus on discussing the considerations that have to be made for efficiently sampling this
class of functions. First we motivate the use of BQ for probability distributions and high-
light the specific advantages that this algorithm has compared to MCMC. Afterwards
we introduce a power reduction operation followed by the derivation of a novel acqui-
sition function which is appropriate for the efficient characterization of log-probability
distributions. Next we discuss the preprocessing of the data followed by a proposal
for an efficient implementation of the Kriging believer algorithm which allows for batch
acquisition and hence for parallel evaluation of the posterior. Lastly the algorithm is
completed by introducing a convergence criterion. This is followed by a discussion of
two of the main problems that this algorithms brings with it. We then perform some
experiments on artificial as well as real likelihoods and evaluate the performance against
MCMC.
In chapter 5 we present a novel algorithm that takes advantage of the speed hierarchies
that are present in many likelihoods by using both nested sampling and BQ in the
Bayesian inference procedure. This is first motivated, then the idea of the algorithm
is presented in detail followed by some considerations regarding the projected speed-up
compared to MCMC. After this we test this algorithm on artificial likelihoods and report
its performance.

2

2 AN INTRODUCTION TO BAYESIAN INFERENCE

2 An introduction to Bayesian inference

In this chapter we will give a brief introduction into the field of Bayesian inference.
Although most of the relevant properties and mathematical definitions will be provided
we will assume that the reader is familiar with the basic concepts of statistics and
probability theory on the level of an introductory lecture. As Bayesian inference relies
heavily on numerical methods this chapter will also provide some insight into the most
commonly used numerical algorithms.
Section 2.1 provides a brief overview of the origin of Bayesian inference in probability
theory and establishes the terminology used throughout this thesis. This is followed by
a discussion of the role of priors and we will touch on some of the numerical difficulties
that appear when performing Bayesian inference. T
he Markov Chain Monte Carlo algorithm, a widely used and generally considered as state
of the art algorithm is introduced in section 2.2. Nested sampling, which is another state
of the art algorithm which takes a different approach at numerical Bayesian inference is
introduces in section 2.3.
Although this can hardly be considered a complete review we will try to address the
specific advantages and shortcomings of these two different approaches as they will play
an important role later in this thesis.

2.1 Bayesian inference

2.1.1 Bayes theorem

At the foundation of Bayesian inference lies Bayes theorem which states that for two
events A and B with probabilities P (A) and P (B) the conditional probability of A given
B is given by [8]

P (A|B) =
P (B|A)P (A)

P (B)
. (2.1)

The conditional probability P (A|B) describes the probability of event A happening given
that event B has happened. Bayes’ theorem is one of the foundations of statistics and
can very simply be derived from the definition of conditional probability [9].
The goal in Bayesian inference is to use this theorem to to update the probability of
some hypothesis given some data. In this context Bayes’ theorem states that

P (hypothesis|data) = P (data|hypothesis)P (hypothesis)
P (data) (2.2)

In Bayesian inference these quantities have special names [8]:
• P (hypothesis) is called the prior since it encodes the prior belief about the likeli-

hood of the hypothesis
• P (hypothesis|data) is called the posterior.
• P (data|hypothesis) is called the likelihood.

3

2 AN INTRODUCTION TO BAYESIAN INFERENCE

• P (data) is called marginal likelihood or model evidence. This quantity usually does
not need to be computed as it is the same for all hypotheses.
Furthermore probability theory demands that for an exhaustive set of n hypotheses
hn and some data d

n∑
i=1

P (hn|d) ≡ 1 . (2.3)

This means that the value of the evidence is fixed by the other quantities appearing
in Bayes’ theorem and that it can be computed by evaluating

P (d) =
n∑
i=1

P (data|hypothesis)P (hypothesis) . (2.4)

2.1.2 Bayes theorem for probability distributions

In most cases Bayesian inference is not used for discrete probabilities but for contin-
uous probability distributions. In this case one is usually interested in inferring some
underlying parameters θ where x ∼ p(x|θ) given some data X = {x1, . . . ,xn}. The
parameters θ themselves again have some underlying distribution θ ∼ p(θ|α) with some
hyperparameters α.
In this case p(θ|α) takes the role of the prior, and p(X|θ) that of the likelihood. These
take the form of continuous probability distributions1 which means that Bayes’ theorem
is modified accordingly: The posterior distribution is

p(θ|X,α) = p(X|θ,α)p(θ|α)
p(X|α)

=
p(X|θ,α)p(θ|α)∫
p(X|θ,α)p(θ|α) dθ ∝ p(X|θ,α)p(θ|α) .

As the prior does not depend on the data X the focus when performing Bayesian in-
ference is usually placed on computing the correct Likelihood which is often written as
LX(θ,α) = L(X|θ,α) = p(X|θ,α). This emphasizes that the free parameters of the
likelihood are θ and α.

Furthermore it is popular to take the logarithm of the Likelihood function which gives
rise to the log-likelihood:

L = log(L) (2.5)

The main motivation for this redefinition is the fact that the logarithm is a monotonic
function which implies that any maximum of the Likelihood function is also a maximum
of the log-Likelihood function. This is useful since we are usually interested in maxi-
mizing the posterior distribution which is a function of the likelihood. The reason that
the log-Likelihood function is used instead is that it is often easier to compute than the
Likelihood. For instance for i.i.d. data with common density the log-Likelihood can be

1While the prior needs to be a true (normalized) probability distribution the likelihood does not nec-
essarily need to meet this criterion. In fact since the likelihood is a probability defined on the data
space it is almost never normalized in the parameter space.

4

2 AN INTRODUCTION TO BAYESIAN INFERENCE

written as a sum

LX(θ) =
∑
x∈X
Lx(θ)

which is generally easier to process than the product appearing in the full likelihood.
This can be especially beneficial in cases where derivatives of the Likelihood are required.
An additional advantage of using the log-likelihood function is the fact that the likelihood
function can only take positive values which are often either very small or very large while
the log-likelihood function maps to R which is numerically beneficial for computation.
Similarly the marginal distribution can be calculated by taking the continuity limit of
the sum in eq. 2.4 which gives rise to the integral:

p(X|α) =
∫
p(X|θ,α)p(θ|α) dθ (2.6)

Of course θ does not necessarily have to be a single parameter but can also be a set of
n parameters θ = {θ1, . . . , θn}. In this case the integral over one or multiple of those
parameters is usually still called the marginal distribution:

p(X|θ̃,α) =
∫
p(X|θ,α)p(θ|α) dθ (2.7)

where θ̃ ⊂ θ and θ = θ\θ̃. θ are then also referred to as nuisance parameters. Since ambi-
guity in the terminology can sometimes be confusing one usually speaks of "marginalizing
over θ".

An important example of a likelihood is that of n i.i.d. random variablesX = (X1, . . . ,Xn)
with some unknown mean µ ∈ R and variance σ2 ∈ R+:

LX(µ,σ2) =
n∏
i=1

1√
2πσ2

exp
(
− (X − µ)

2

2σ2

)
. (2.8)

This is a prime example of the practical advantages of taking the log-Likelihood since
this is much easier to compute:

LX(µ,σ2) =
n∑
i=1
− log(2πσ2)− (X − µ)2

2σ2 (2.9)

2.1.3 Priors

Since the prior distribution assigns a probability to a hypothesis before looking at any
data it should reflect the knowledge about the problem at hand (or the lack thereof) that
can be drawn from initial considerations. As such a prior can e.g. restrict the possible
domain of the parameters θ or encode some belief about the nature of the distribution.
Furthermore the posterior distribution of one combination of hypothesis and data can
often be the prior for a different one. This is often the case if several experiments give
rise to likelihoods for the same set of parameters.

5

2 AN INTRODUCTION TO BAYESIAN INFERENCE

In many cases we do not have very accurate information about the nature of the distribu-
tion on which we want to perform Bayesian inference in which case it is often advisable
to construct a prior distribution which translates the information provided by the like-
lihood into the posterior while adding minimal bias. Many attempts at this have been
made and this is still an area of active research. A full review of this would be beyond
the scope of this thesis however it is worth mentioning that the most commonly used
priors in practice are the flat or uniform prior and the gaussian prior. These take the
shape of a uniform distribution and a gaussian distribution respectively. For additional
information on this this topic please refer to [8, 10].

2.1.4 Numerical considerations

In Bayesian inference the main focus usually lies on computing the posterior distribution
for a given theory and marginalizing over different combinations of its parameters θ, usu-
ally for visualization of the distribution and for the inference of marginalized quantities
such as confidence intervals.
While computing the marginal distribution can be performed analytically for a select
group of simple posterior distributions, this integral has to be calculated numerically
for most applications in physics as the Likelihood function either has an analytically
intractable integral or is not given as an analytic function in the first place but has to
be calculated numerically.
This coupled with the fact that θ is often high dimensional (e.g. the Planck 2018
Likelihood has 27 free parameters [11]) requires careful consideration of the integration
method used. In particular this calls for an efficient algorithm which allows a robust
characterization of the full parameter space θ while also enabling easy marginalization
over any set of dimensions of this space.
Some of these algorithms will be presented in the following.

2.2 Markov Chain Monte Carlo

2.2.1 Markov Chains

To understand the concept of Markov Chain Monte Carlo (MCMC) we first have to
establish the definition of a Markov Chain [10]

Definition 2.1. A Markov Chain (MC) is a discrete stochastic process in which ev-
ery next step in the process depends only on the current step. This property is also
called Markov property. Formally it can be defined as a sequence of random variables
X1,X2, . . . ,Xn such that

p(Xn+1|X1 = x1,X2 = x2, . . . ,Xn = xn) = p(Xn+1|Xn = xn) . (2.10)

This means that at any point the chain only depends on the location of the previous
sample which has the computational advantage that only two locations Xn,Xn−1 need
to be kept in the main memory at any time while the rest of the chain can be saved

6

2 AN INTRODUCTION TO BAYESIAN INFERENCE

to the hard drive. In addition this property also implies that any sub-chain of an MC
containing Xj ,Xj+1, . . . Xk where 1 < j < k < n is again an MC.

2.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo is the most commonly used and most thoroughly studied
algorithm which fulfills the requirements for an efficient integration algorithm which were
established earlier. The idea of this algorithm is to construct a process which approaches
the sampled probability density as its stationary distribution. In other words the goal is
to construct a chain which follows a path in the parameter space such that the normalized
histogram of values approaches the probability density function (PDF) [9].
This is done by constructing a Markov Chain which is defined as a sequence of possible
events where the probability of each event only depends on the state attained in the last
step. This requires some rule which describes the probability to jump from one value in
the likelihood to the next. One of the simplest and most widely used algorithms for this
is the Metropolis-Hastings algorithm.
For a probability distribution p(x) that we want to map, this algorithms works by
introducing an acceptance rate α which gives the probability that the chain will jump
to a drawn value. This acceptance rate is calculated by sampling a point from some
arbitrary probability density g(x′|xt) that suggests a candidate point x′ based on the
the previous candidate sample xt. A common choice for g is a Gaussian distribution
which is centered on xt.
Having drawn x′ from g(x′,xt) the acceptance ratio α is calculated2:

α =
p(x′)

p(xt)
(2.11)

This acceptance ratio is compared to a uniformly drawn number u ∈ [0, 1]:
• If α ≥ u the candidate is accepted and xt+1 = x′.
• If α < u the candidate is rejected and xt+1 = xt

This way the chain always jumps towards higher values of p while the probability for
jumping to points which have a value which is lower than the current one is smaller than
1. Furthermore it is noteworthy that g can only depend on the current value of the chain
xt to conserve the Markov property (see Def. 2.1).
The integration of the Monte Carlo approximation of the PDF can be done by summing
the histogram of samples along one or multiple axes. It is one of the strengths of
MCMC that this summation is computationally very cheap and that this histogram is
a natural by-product of the Markov Chain. Furthermore the computational overhead
of this method is independent of the number of samples in the chain and only consists
of the computation of the proposal distribution, the evaluation of the likelihood and
posterior function and the acceptance rate of the Metropolis Hastings proposal.

2It is important to note that we are in fact not mapping p(x) itself but a target distribution f(x) which
is proportional to p(x). This rarely matters in practical applications though since we can easily
normalize the histogram.

7

2 AN INTRODUCTION TO BAYESIAN INFERENCE

0
200

400
600

800
1000 -100

-50
0

50
100

0
0.01
0.02
0.03

Samples

Iterations

Figure 2.1: Example of the Metropolis Hastings MCMC algorithm on a mixture of two gaussian
distributions with a uniform prior in [−100, 100]. The chain consists of 1000 steps
with a gaussian proposal distribution N (Xn, 8) that is centered on Xn and has a
standard deviation of 8. One can see how the normalized histogram of samples
converges towards the real posterior distribution in the back. The image has been
taken from [9].

Disadvantages to this method are that a lot of information about the posterior distribu-
tion is simply ignored. As such the chain is oblivious to rejected samples and the values
of the posterior at the sampling locations. In addition it is somewhat difficult to calcu-
late the total evidence since the values of the likelihood are discarded during sampling.
Another issue is that MCMC requires a lot of fine tuning to correctly map multimodal
distributions. An illustration of Metropolis-Hastings-MCMC of a one-dimensional dis-
tribution is shown in Fig. 2.1.
As mentioned above the Metropolis-Hastings algorithm is one of the most commonly used
acceptance rules for MCMC. However there are other methods, most notably Hamilton
Monte Carlo3 (HMC) [12] and a adjusted version of the Metropolis-Hastings algorithm
called Gibbs sampling for multidimensional distributions where instead of sampling from
the joint distribution and integrating over it, one sequentially samples from the condi-
tional distribution in each dimension [10].

2.3 Nested Sampling

An alternative approach to MCMC which has become increasingly popular recently
due to its robustness against multimodality and the fact that it can calculate the total
evidence is the nested sampling algorithm which has been pioneered by John Skilling
[6] and this section closely follows this paper. This algorithm uses a principle which is

3In the literature this is also commonly referred to as Hybrid Monte Carlo

8

2 AN INTRODUCTION TO BAYESIAN INFERENCE

similar to that of Lebesgue integration to find an estimate for the evidence

Z =
∫
L(θ)π(θ) dθ (2.12)

where L(θ) is the likelihood function and π(θ) the prior. While this integral is straightfor-
ward to compute numerically (e.g. by using the trapezoidal rule) if θ is low-dimensional
and L(θ)π(θ) is cheap to evaluate, one needs a more efficient algorithm if these two
conditions are not met.
The nested sampling algorithm is such an algorithm which is obtained by observing that
we can rewrite Eq. 2.12 by substituting

X(λ) =
∫
L(θ)>λ

π(θ) dX . (2.13)

For increasing λ the enclosed mass X hence decreases from 1 to 0 (due to the fact
that π(θ) is a probability distribution). By renaming L(X) to the inverse function i.e.
L(X(λ)) ≡ λ the evidence reduces to a one dimensional integral

Z =
∫ 1

0
L(X) dX . (2.14)

This transformation is advantageous since now the integrand L(X) is positive and de-
creasing.
While this integral may look very easy at first the problem which remains is that invert-
ing L is not trivial and usually cannot be done analytically. Intuitively this would be
done by dividing the θ-space into a fine grid, evaluating the likelihood for each of these
bins and sorting them by value

0 < Xm < · · · < X2 < X1 < 1

where we assume that we have divided the space into m parts. The weighted sum
m∑
i=1

wiLi → Z (2.15)

then converges to the value of the integral where wi = ∆X is the distance between Xi

and Xi+1. This corresponds to approximating the integral by summing up the histogram
of the inverted likelihood. As such it is an approximate form of Lebesgue integration.
An illustration of this approach is shown in Fig. 2.2.
In practice one wants the sampling to be linear in log(X) instead of X because in most
real world cases the bulk of the posterior mass only occupies a small fraction e−H of the
prior volume where

H =
∫

log(dP/dX) dP (2.16)

which is achieved by introducing a variable t such that

X1 = t1, X2 = t1t2, . . . ,Xi = t1t2 . . . ti, . . . Xm = t1t2 . . . tm (2.17)

9

2 AN INTRODUCTION TO BAYESIAN INFERENCE

0 1X X X

L

L

L

L

L

L
L

Parameter space
3 2 1

1

2

3

1

2

3

Figure 2.2: Illustration of the nested sampling approach. Each iso-likelihood contour Li (left) in
the parameter space corresponds to a valueXi (right) in the inverted likelihood space.
The evidence can be computed by numerically approximating Z =

∫ 1
0 L(X) dX with

the weighted sum in Eq. (2.15). Image taken from [6].

where each ti is a value between 0 and 1. We can express this explicitly by writing
m∑
i=1

wi(t)Li → Z(t) . (2.18)

What remains is to set precise values for t and while this is difficult to set exactly it
can be done statistically. The reason for this is that for any point Xi which is randomly
drawn from the prior with the constraint that Xi < Xi−1 with X0 = 1, we know that
Xi = tiXi−1 where ti is drawn from the uniform distribution covering [0, 1). Since the
constraint Xi < Xi−1 is equivalent to Li > Li−1 with L0 = 0 we can use this to sample
directly from the likelihood instead of having to invert it.

The idea of nested sampling is then to draw a convenient number N of points from the
prior and at each iteration select the worst point (the one with the lowest L and highest
Z) as the i’th point. The recurrence for X is then given by

X0 = 0,Xi = tiXi−1 (2.19)

and since ti is the largest of N numbers drawn from uniform[0, 1) the probability for
obtaining a value ti is given by

p(ti) ∼ NtN−1
i

If we treat this like a distribution in log(t) we can easily calculate the expectation value
and variance analytically which yields

E(log(t)) = −1/N var(log(t)) = 1
N2 . (2.20)

The expectation value can then be used as an approximation for ti. The point which has
been previously selected is then deleted and replaced by another point which is drawn
from the prior with the constraint that L > Li. Finding an independent point that

10

2 AN INTRODUCTION TO BAYESIAN INFERENCE

follows the prior distribution and fulfils L > Li can be a bit tricky if the bulk of the
posterior volume is contained in a small region of the prior.
We can make our lives easier though by not sampling directly from the prior but rather
evolving one of our N points which by definition have higher likelihood values than Li
with some algorithm which makes the new sample approximately independent from Li,
for example a sufficiently decorrelated MCMC chain. This procedure is done iteratively
until the required precision is reached.
Conveniently this algorithm also allows us to estimate the uncertainty of Z. Since the
values for t in the weighted sum ∑

i Liwi(t) are set statistically instead of actually
inserting the correct value for t this induces an uncertainty in the estimate of Z. Luckily
we can estimate the uncertainty in t by observing that the distribution for ti gives rise
to a "sequence probability"

Pr(t) dt =
∏
i

NtN−1
i (2.21)

which in turn induces a probability for the estimate of Z:

Pr(Z) =
∫
δ

Z − m∑
i−1

Liwi(t)

Pr(t) dt (2.22)

The moments of this distribution can then be determined by any integration algorithm
that is convenient. In practice MCMC is commonly used for this. In addition the
integration is often done in log space as it is numerically more convenient and usually
the the evidence itself is also calculated in log space.
Pseudocode of the full algorithm is shown in algorithm 1.

Input: N initial points θ = {θ1, . . . , θN} from prior
[1] Z := 0
[2] X0 := 1
[3] for i = 1, 2, . . . , j do
[4] Li = min(L(θ))
[5] Xi := exp(−i/N) (crude) or sample Xi to get uncertainty eq. (2.20,2.21)
[6] wi := Xi−1 −Xi (simple) or (Xi−1 −Xi+1)/2 (trapezoidal)
[7] Z = Z + Liwi
[8] replace Li with point drawn from π(θ) with L(θ) > Li
[9] end

[10] Z = Z + 1
NL(θ1 + · · ·+ L(θN))Xj

[11] return Z

Algorithm 1: Pseudocode of the nested sampling algorithm. The last step
(line 10) takes advantage of the points left after j steps. If the algorithm has
converged this should only add a small correction and could very well be omitted.
The pseudocode is taken from [6].

11

2 AN INTRODUCTION TO BAYESIAN INFERENCE

102
1

N
um

be
r
of

Li
ke
lih

oo
d

ev
al
ua

tio
ns
,N

L

Number of Dimensions, D

103

104

105

106

107

108

109

1010
PolyChord
MultiNest

2 4 8 16 32 64 256128

Figure 2.3: Number of evaluations needed to achieve convergence on a unimodal gaussian like-
lihood with nested sampling. The two programs, PolyChord [7, 13] and MultiNest
[14, 15, 16] are different implementations of the basic nested sampling algorithm.
One can see the exponential scaling of MultiNest emerging in high dimensions while
PolyChord scales polynomially which comes from the differences in the ways both
algorithms select their samples. The image has been taken from [7].

2.4 Typical computational complexity

The speed of convergence for both MCMC and nested sampling algorithms depends on a
number of factors. These are the desired accuracy of the sampling (usually estimated by
a convergence criterion), the number of modes of the posterior distribution (where a large
number of modes typically means slower convergence) as well as the shape of the posterior
distribution. For instance "banana"-shaped posterior distributions are challenging for
these algorithms and thus need a higher number of evaluations.
Another important factor is the dimensionality of the posterior distribution. Algorithms
typically either scale exponentially with the number of dimensions or polynomially with
NL ∝ const ·Dρ. This scaling for two different nested sampling algorithms and sim-
ple, unimodal gaussian distributions is shown in Fig. 2.3. Similar data for an MCMC
algorithm which is described in [17, 18] is shown in Fig. 2.4. Again random unimodal
gaussians were used as posterior distributions. One can see that the number of evalua-
tions for both algorithms is comparable.
The number of samples shown here can be seen as a lower bound on the number of
samples which need to be evaluated to achieve convergence since unimodal gaussian
distributions are especially simple to sample.

12

2 AN INTRODUCTION TO BAYESIAN INFERENCE

1 2 4 8 16
Number of dimensions, D

103

104

105

N
um

be
r
of

Li
ke
lih

oo
d
ev
al
ua

tio
ns
,N

L NL ∝ D1.7

1 chain
4 chains

Figure 2.4: Number of evaluations to achieve convergence on a unimodal gaussian likelihood
with MCMC. The algorithm used is a modified version of the Metropolis Hastings
algorithm that is described in [17, 18]. 50 (10 in 16 dimensions) random, mildly
correlated gaussian distributions were drawn and sampled using adaptive covariance
matrix learning. The empirical mean and standard deviation for the number of
evaluations per chain are shown for one and four chains. Furthermore the theoretical
scaling which is ∝ D1.7 is shown. The number of chains corresponds to the number
of parallel processes which can be run.

13

3 GAUSSIAN PROCESSES

3 Gaussian Processes

This chapter gives an overview on Gaussian Processes (GPs), as these will be used
later to present an alternative approach to using MCMC or nested sampling methods to
construct a model of the posterior.
First, the concept of GPs and their mathematical foundations are introduced in section
3.1 followed by an intuitive description of the practical considerations that need to be
taken into account when using GPs. The kernel function is discussed in detail in section
3.2, followed by examples of the most commonly used kernel functions.
Next, GP regression is introduced in section 3.3. This part of the chapter closely follows
chapter 1 and 2 of [19] and can be viewed as a brief introduction to the main concepts
of GP regression.
Section 3.4 introduces Bayesian quadrature together with a review of Bayesian optimiza-
tion and active sampling in 3.4.1. As these topics are still areas of ongoing investigation
we will try to give an overview of the current state of research.

3.1 Concept

While GPs are mathematically simple and well defined, getting an intuitive understand-
ing of how they work requires us to introduce the concept of a stochastic process. Omit-
ting the mathematical details it can be thought of as a function

{Y (t) : t ∈ T}

where Y is a random variable drawn from some probability measure P . T is often
referred to as index set. Important examples of stochastic processes apart from GPs are
Markov- and Wiener processes [20].
Armed with this idea of stochastic processes we can formally define GPs:

Definition 3.1. A Gaussian Process is a collection of random variables, any finite
number of which have a joint Gaussian distribution. [19]

This means, that a GP is a stochastic process defined on any set T = {t1, ..., tn} where
the n values {y1, ..., yn} are drawn from a joint Gaussian distribution

N (t|µ, Σ) =
1√

(2π)ndet(Σ)
exp

(
−1

2 (t−µ)
>Σ−1(t−µ)

)
(3.1)

with

µ =

µ1
...
µn

 , Σ =

Σ11 . . . Σ1n
...

Σn1 . . . Σnn

 .

µ is called the mean vector (of length n) and Σ the covariance matrix (of size n× n).
While in principle any set T is allowed for a valid GP,4 in practice only the case where
4In fact any multivariate Gaussian distribution between variables in the same space is a GP.

15

3 GAUSSIAN PROCESSES

T is continuously defined on R is of particular interest5. In the following the index set
of the continuous GP will be denoted as X.
Nevertheless it is useful to look at the finite integer set {1, ...,n} in order to gain an
intuitive understanding of how a GP defined on a continuous domain works.Fig. 3.1
shows how such a discrete GP looks like for n = 5 and n = 30. One observes that the
GP is fully described if for every two points t, t′ ∈ T there exist (i) two mean values µ,µ′
and (ii) a covariance matrix Σ. These can be expressed as two functions (here in the
continuous case with the index set X):
(i) the mean function m(x) and (ii) the covariance function (often called kernel) k(x,x′)
with x,x′ ∈ X. As such a continuous GP is a distribution over functions f(x) which
can be expressed as

f(x) ∼ GP(m(x), k(x,x′)) (3.2)

where

m(x) = E[f(x)] (3.3)
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] . (3.4)

Note however that the definition of a stochastic process automatically implies a con-
sistency requirement (also called Kolmogrov’s extension theorem [21]) which demands
that any GP that specifies (y1, . . . , yn) ∼ N (x|µ, Σ) on any set X must equally specify
(y′1, . . . , y′n) ∼ N (x′|µ′, Σ′) for any subset X ′ ⊂ X by taking the relevant parts of µ
and Σ. In other words this means, that for X = R one does not need to know the
(infinite-dimensional) full distribution between all indices to make predictions about a
finite subset of indices.

3.1.1 Conditioning

In practice one does not only want to draw values from the prior distribution but wants
to incorporate knowledge about a set of training points {(xi, yi = fi)|i = 1, . . . ,n}. In
the GP framework the joint distribution of these training points f and an arbitrary set
of test points f∗(x∗) is[

f
f∗

]
∼ N

([
m(x)
m(x∗)

]
,
[
K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
(3.5)

such that if there are u training and v test points m(x) is the vector of length u with
m(x)i = m(xi) and K(x,x)ij = k(xi,xj) with dimension u× u. Similarly K(x∗,x)
has dimension v× u and K(x∗,x∗) dimension v× v. The matrix

K(x,x′)ij = k(xi,x′j) (3.6)

for any kernel k is called the Gram matrix between x and x′.
As the training points are known observations, it is necessary to condition the joint

5Actually the case where X ⊂ RD is even more interesting for our purposes. How the formalism can
be extended to this case is described in section 3.2.2

16

3 GAUSSIAN PROCESSES

1 2 3 4 5
t

−2

−1

0

1

2

y

0 5 10 15 20 25 30
t

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

y

Figure 3.1: Left: Samples drawn from a multivariate gaussian distribution with m(t) = 0 and
k(t, t′) = exp

(
− (t−t′)2

200

)
. The samples are indexed by the set {1, 2, 3, 4, 5}. Right:

Samples drawn from the same multivariate gaussian distribution defined on the index
set {t ∈ N, 1 ≤ t ≤ 30}. Intuitively one can see how a the samples describe smooth
functions. For the continuous index setX,m(x) and k(x,x′) can be chosen as smooth
functions R → R which makes the transition from the discrete index set T to the
continuous index set X obvious.

probability on the observed values6. Fortunately conditioning for multivariate Gaussians
is very simple:

f∗|x∗,x,f ∼ N(f∗, Σf∗) (3.7)

with

f∗ =m(x∗) +K(x∗,x)K(x,x)−1(f −m(x)) (3.8)
cov(f∗) = Σf∗ = K(x∗,x∗)−K(x∗,x)K(x,x)−1K(x,x∗) (3.9)

This conditioned GP is then called the posterior GP.
One thing to note about these equations is, that even for a zero-mean prior function
m(x) = 0 ∀x it is possible to obtain a non-zero posterior mean value for the conditioned
distribution. This is motivates the choice m(x) = 0 as mean function which reduces the
problem of constructing a GP solely to the choice of an appropriate kernel function (see
section 3.2 for more details). Unless mentioned otherwise all further calculations in this
thesis will assume a zero mean function.
A graphical example of how this conditioning works can be seen in Fig. 3.2 where on
the left are sample functions drawn from a prior GP with m(x) = 0 and k(x,x′) =

exp
(
− (x−x′)2

2

)
and on the right sample functions from a GP that is conditioned on a set

of training points (observations). The value of their prior and posterior mean functions
as well as their standard deviations are also shown. The standard deviations are the

6This is equivalent to taking the set of the (infinitely) many possible functions f(x) and rejecting all
functions which do not pass through the points {xi, yi|i = 1, . . . ,n}

17

3 GAUSSIAN PROCESSES

square-root of the diagonal entries of the covariance matrix:

σ(xi) =
√

Σf (xi),ii (3.10)

Predictions with noisy observations
In practice the training data often has some associated statistical noise y = f(x) + ε.
Where ε has an associated variance σ2

n which in most cases can be assumed to be i.i.d.
gaussian. It is very simple to include this into the GP framework by simply adding this
noise term to the kernel function:

k̃(x,x′) = k(x,x′) + σ2
nδx,x′ (3.11)

where δx,x′ is the Kronecker delta. This also changes the equations for conditioned GPs
as now the common distribution between y and f∗ is given by[

y
f∗

]
∼ N

([
m(x)
m(x∗)

]
,
[
K(x,x) + σ2

nI K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
. (3.12)

This means that the conditional distribution changes to

f∗|x∗,x,y ∼ N(f∗, Σf∗) (3.13)

with

f∗ =m(x∗) +K(x∗,x)[K(x,x) + σ2
nI]
−1(y−m(x)) (3.14)

cov(f∗) = Σf∗ = K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2
nI]
−1K(x,x∗) . (3.15)

3.2 The kernel function

As discussed in the last section, with the mean function usually assumed to be zero, the
GP is fully characterized by its kernel or covariance function. This raises the need to
closely examine the properties of a kernel function and inspect which kernels are suitable
to accurately predict a functional dependence from measurements.
As kernel functions cannot be any arbitrary function, we have to first establish the
requirements which have to be fulfilled by a kernel to be valid. As the kernel is a
function of two (potentially vector-like) variables k(x,x′), that describes the covariance
between two points, it trivially needs to fulfil three conditions:

1. The kernel needs to map k : RD ×RD → R

2. It needs to be symmetric: k(x,x′) = k(x′,x)
3. The covariance matrix obtained from the kernel needs to be positive definite:
zTK(x,x′)z ≥ 0 for all z ∈ RD\0 and with K(x,x′)ij = k(xi,x′j) being the
Gram matrix of x and x′. This condition is fulfilled if and only if k(x,x′) ≥ 0 for
all x,x′ ∈ X [22].

Apart from these mathematical requirements a kernel function should also represent all
knowledge that is available on the underlying functional dependence of the training set.

18

3 GAUSSIAN PROCESSES

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

−3

−2

−1

0

1

2

3
f

(x
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

−3

−2

−1

0

1

2

3

f
(x

)

Figure 3.2: Left: Sample functions drawn from a GP with µ(x) = 0 and k(x,x′) =

exp
(
− (x−x′)2

2

)
(dashed lines) as well as the value of the prior mean function and the

standard deviation
√
k(x,x) (solid black line and grey band). Note how in principle

any function f(x) is allowed but the probability that any function is drawn is dictated
by the mean function and kernel. Right: Sample functions drawn from the same GP
after conditioning (dashed lines) on five observations (black crosses). Again mean
function and standard deviation are shown, this time for the posterior GP. Note how
even with a zero prior mean function m(x) = 0 one obtains a non-zero posterior
mean. Furthermore after conditioning, only those functions which pass through the
training points are allowed.

A kernel function can encode information such as differentiability, periodicity and vari-
ability in the data. As GPs are non-parametric models unfortunately it is quite hard
to infer a suitable kernel function from prior knowledge (unlike for parametric models
where the functional dependence is chosen beforehand). This makes the choice of kernels
for specific problems complicated.
Nevertheless some general statements can be made about some kernels and how their
characteristics translate to the GP. The most important ones are listed below:

1. The first important characteristic is stationarity. This simply means, that a kernel
function is invariant to translations, i.e.

k(x+ z,x′ + z) = k(x,x) ∀ z .

Any stationary kernel can hence be rewritten as a function of the distance d =
|x− x′| The stationarity of a kernel will directly translate to a GP. In most cases
stationarity is desirable.

2. The second important characteristic of kernels is differentiability. Again this trans-
lates directly to the GP. If a kernel function is n times differentiable so is the
resulting GP.

3. Lastly a kernel can be periodic, which is defined as

k(x,x′) = k(x,x′ + n · z), n ∈ Z .

Again periodicity of the kernel also imposes periodicity on the GP.

19

3 GAUSSIAN PROCESSES

In the following the most commonly used kernel functions are presented. This list is by
no means complete. In principle there are infinitely many viable kernel functions.

The Constant kernel
This kernel is perhaps the easiest kernel imaginable as it is just defined as

k(x,x′) = C, C ∈ R+ (3.16)

While this kernel is mathematically very easy, in practice it is rarely useful on its own
because it results in an infinite correlation length if C 6= 0. This means that all points
have the same value.
Usually the constant kernel is only used as a building block for more complex composite
kernels (see section 3.2.1). An example of a GP with a constant kernel before and after
conditioning is shown in Fig. 3.3.

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

ri
or

)

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

os
te

ri
or

)

Figure 3.3: Left: Sample functions drawn from a GP with a constant kernel (C = 1) (dashed
lines) as well as the value of the prior mean function and the standard deviation (solid
black line and grey band). Right: Same GP after conditioning on five observations
(black crosses). The standard deviation for the posterior GP is not visible.

The White (noise) kernel
The white kernel is almost as simple as the constant kernel. It imposes a variance on
points but no correlation between them:

k(x,x′) = σ2
nδx,x′ (3.17)

where δx,x′ is the Kronecker delta, which is one if x = x′ and zero otherwise. As this
kernel does not establish any relation between any pair of x-values, a GP with only a
white kernel is equivalent to a random noise generator. Mathematically speaking this is
due to the fact that the Gram matrix of k(x,x′) only has non-zero values on its diagonal
and thus all covariances between points vanish.
Again this kernel is almost exclusively used to build composite kernels. In fact including
i.i.d. statistical noise into a GP is equivalent to adding a white kernel to an existing
kernel as shown in Eq. 3.11. Fig. 3.4 shows an example of a GP with a white kernel

20

3 GAUSSIAN PROCESSES

before and after conditioning on five points. In this example σ2
n is chosen to be one so

that the GP corresponds to white noise with a standard deviation of one.

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

ri
or

)

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

os
te

ri
or

)
Figure 3.4: Left: Sample functions drawn from a GP with a white kernel (σ2

n = 1) as well as
the value of the prior mean function and the standard deviation (solid black line and
grey band). Right: Same GP after conditioning on five observations (black crosses).
This GP corresponds to white noise with a standard deviation of σn = 1

The RBF kernel
Perhaps most commonly used kernel function is the Radial Basis Bunction (RBF) ker-
nel7. This kernel is usually defined as

k(d) = exp
(
− d2

2 · l2

)
, l ∈ R . (3.18)

It is infinitely many times differentiable and stationary. A drawback of this kernel is
that is produces very "smooth" GPs which in case of real world data rarely reflects the
truth. Therefore it has been argued by many authors that the RBF kernel should not
be used in applications where real world data is involved [19].
Fig. 3.5 shows a GP with an RBF kernel with l = 1. Note how the sample functions
drawn from the GP are very smooth.

The Matérn kernel The Matérn kernel can be seen as a generalization of the RBF
kernel with the introduction of an additional parameter ν which controls the differentia-
bility. Like the RBF kernel, it is stationary. It is defined as [9]

kν(d) =
21−ν

Γ(ν)

√2νd
l

ν ·Kν

√2νd
l

, l ∈ R+ . (3.19)

where Γ is the gamma function and Kν the modified Bessel function of the second kind
A value of ν = n+ 1

2 means that the kernel is n times differentiable. For n = 0 it is

7In the literature this kernel has many different names among which are Squared Exponential kernel
and Gaussian kernel. Throughout this thesis we will stick to RBF kernel though.

21

3 GAUSSIAN PROCESSES

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

ri
or

)

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

os
te

ri
or

)

Figure 3.5: Left: Sample functions drawn from a GP with an RBF kernel (l = 1) as well as the
value of the prior mean function and the standard deviation (solid black line and
grey band). Right: Same GP after conditioning on five observations (black crosses).

simply given as

k1/2(d) = exp
(
−d
l

)
and is often referred to as Ornstein-Uhlenbeck kernel, as when it is used to define a GP
it describes the (one-dimensional) velocity of a particle undergoing brownian motion [9].
Furthermore for ν → ∞ the Matérn kernel approaches the RBF kernel. Fig. 3.6 shows
a GP with a Matérn kernel with ν = 3

2 , l = 1. The sample functions drawn from the
GP are therefore once differentiable which is clearly visible when compared to samples
drawn from the RBF kernel.

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

ri
or

)

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

os
te

ri
or

)

Figure 3.6: Left: Sample functions drawn from a GP with a Matérn kernel (ν = 3
2 , l = 1) as

well as the value of the prior mean function and the standard deviation (solid black
line and grey band). Right: Same GP after conditioning on five observations (black
crosses). Note how the sample functions drawn from the GP are much less smooth
than those drawn from the GP with RBF kernel.

22

3 GAUSSIAN PROCESSES

The exponential-sine squared kernel The exponential sine squared (ESS) kernel is a
prime example of a periodic kernel.8 It is stationary and defined as [23]

k(d) = exp

2 sin2
(
πd
p

)
l2

 (3.20)

where p controls the distance between different periods of the function and l plays the
same role as in the RBF kernel. Fig 3.7 shows an example of a GP with ESS kernel. The
periodicity is clearly visible.

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

ri
or

)

0 2 4 6 8 10 12 14
x

−3

−2

−1

0

1

2

3

y
(p

os
te

ri
or

)

Figure 3.7: Left: Sample functions drawn from a GP with a ESS kernel (l = 10−5, p = 1) as
well as the value of the prior mean function and the standard deviation (solid black
line and grey band). Right: Same GP after conditioning on five observations (black
crosses). The interpretation of the data differs a lot from the one by the RBF and
Matérn kernels due to the imposed periodicity.

3.2.1 Composite kernels

From the three conditions for kernel functions specified in section 3.2 one can combine
known kernel functions into new ones through simple operations. Most importantly
two operations always conserve these conditions and can hence be used to construct
composite kernels:

1. The sum of two or more kernels is a valid kernel.
2. The product of two or more kernels is also a valid kernel.

In practice these rules can be used to construct composite kernels to better incorporate
prior knowledge about the functional dependence of the data one tries to represent.
Furthermore it is possible to assign different covariance functions to different domains
as explained in [25].

8In the literature, this kernel function is often simply referred to as periodic kernel [23, 19, 24]. Since
this is somewhat misleading, as this is just one example of possible periodic kernels we will stick to
"ESS kernel".

23

3 GAUSSIAN PROCESSES

3.2.2 Higher dimensionality

So far we have only looked at the case where a GP is a function GP : R→ R. However we
often encounter the case where the function to be approximated by the GP is RD → R.
In this case the formalism can be trivially modified by changing the kernel function such
that k(x,x′) : RD ×RD → R. An example of a GP mapping R2 → R can be seen in
Fig. 3.8 (top) where the the kernel function is the RBF kernel:

k(x,x′) = exp
(
−|x−x

′|2

2

)

Additionally a way to construct a kernel is as a composition of kernels where each kernel
only acts on a single direction. In this case a valid two-dimensional example using the
RBF kernel could be

k

((
x1
x2

)
,
(
x′1
x′2

))
= exp

(
−|x1 − x′1|2

2l1

)
· exp

(
−|x2 − x′2|2

2l2

)

This GP with l1 = 10−3, l2 = 1 is shown in Fig. 3.8 (bottom). The different length scales
cause the GP to behave differently along the two dimensions. In principle it would also
be possible to use different types of kernels e.g. an RBF kernel along one axis and a
periodic kernel along the other if this reflects the prior knowledge about the hypothesis.
From a computational standpoint it is important to point out that for anisotropic kernels
the number of hyperparameters increases proportionally to the number of dimensions of
the data. This in turn means that obtaining the MAP estimate for these hyperparameters
as explained in section 3.2.3 becomes computationally more expensive.

3.2.3 Tuning the kernel’s hyperparameters

All the kernels that have been presented in the previous section have one or more free
parameters, which are in principle dependent on the prior knowledge of the data. In
the context of GPs these are usually referred to as hyperparameters9 θ. In many cases
however the knowledge about e.g. the characteristic length scale l or the variance σ2

n is
missing or not immediately obvious.
Fortunately the GP itself can be used to obtain a best estimate of these parameters using
Bayesian inference. This is done by maximizing the marginal likelihood (or evidence) of
the training data under the GP which is given as the integral over the prior times the
likelihood [19]:

p(y|x) =
∫
p(y|f ,x)p(f |x) df (3.21)

where p(f |x) is the prior which in our case is gaussian f |x ∼ N (0,K). Furthermore the
9There exists an ambiguity here since we also introduced hyperparameters and the letter θ in chapter
2.1.
This is no coincidence since the Gaussian Process prior and the training set also induce a likelihood.

To avoid confusion the hyperparameters of the GP will be explicitly called GP hyperparameters if
not clear from the contest.

24

3 GAUSSIAN PROCESSES

x
1

−3
−2
−1

0
1

2
3

x 2

−3
−2
−1

0
1

2
3

f̄ ∗

−2

0

2

4

x
1

−3
−2
−1

0
1

2
3

x 2

−3
−2
−1

0
1

2
3

√
d
ia

g
(c

ov
(f̄
∗)

)

0.0

0.1

0.2

0.3

0.4

x
1

−3
−2
−1

0
1

2
3

x 2

−3
−2
−1

0
1

2
3

f̄ ∗

−2

0

2

4

x
1

−3
−2
−1

0
1

2
3

x 2

−3
−2
−1

0
1

2
3

√
d
ia

g
(c

ov
(f̄
∗)

)
0.0

0.2

0.4

0.6

0.8

Figure 3.8: Top: Mean (left) and standard deviation (right) for Posterior GP with an isotropic
RBF kernel with l = 1 conditioned on five training points (black dots).
Bottom: GP conditioned on the same training points with an anisotropic kernel with
l1 = 10−3, l2 = 1. The interpretation of the data changes considerably from the
isotropic case to the anisotropic one.

25

3 GAUSSIAN PROCESSES

likelihood is just the function (or a factorized gaussian if the training data has associated
noise) with y|f ∼ N (f ,σ2

nI) which means that the integral can be analytically calculated
which gives:

log p(y|X) = −1
2y

T (K + σ2
nI)
−1y− 1

2 log |K + σ2
nI| −

n

2 log 2π (3.22)

For a full proof please refer to 6. This induces a posterior distribution for the hyperpa-
rameters θ which can be treated in two ways:

• In the full Bayesian treatment the posterior distribution will be fully taken into
account. This is numerically problematic as the distribution of θ modifies the
variance of the conditioned GP. Taking this into account is somewhat tricky and
usually involves Monte Carlo methods which are numerically expensive.

• One can obtain a maximum a posteriori (MAP) or Maximum Likelihood type II
(ML II) estimator of the optimal hyperparameters like in frequentist statistics.
This is numerically less challenging since we are only required to maximize Eq. 3.22
with a suitable algorithm however this essentially approximates the posterior dis-
tribution to a δ-distribution which is no proper Bayesian treatment. To save on the
computational complexity while still taking this into account some approximation
techniques have been proposed in [1] but we will ignore this detail for the moment
and discuss the implications later.

3.3 GP Regression

Having discussed the ingredients of GPs it is now time to look at the full algorithm
which is used to do GP regression. GP regression (sometimes also referred to as Krig-
ing) describes the construction of a GP with the help of some kernel k(x,x′|θ) with
some unknown hyperparameters θ which are determined by Bayesian inference using the
MAP estimate of θ. The advantage of this method lies in the fact that the only choice
which is left to the user is that of a suitable prior kernel which usually only incorpo-
rates some broad knowledge about the characteristics of the function which describes
the data (differentiablity, periodicity, etc.). Furthermore the MAP estimators of the
hyperparameters have an easy interpretation as shown in section 3.2.
The algorithm to approximate some unknown function f(x) given some data pairs x,y
(training inputs) with associated noise y = f (x) + σn can be divided into two steps:

1. In the training step the hyperparameters of the model are optimized by maximizing
Eq. 3.22 and (K + σ2

nI) is precomputed
2. In the prediction step the GP is conditioned according to Eq. 3.14.

Of course this can in principle be done in one step but it is specifically divided into
two steps here to stress the fact that there is a distinct part which trains the GPs
hyperparameters and another part which conditions this trained GP on the observations.
In practice the prediction (conditioning) step is often called multiple times while the
training only has to be performed once for a given training set x,y.

26

3 GAUSSIAN PROCESSES

Pseudocode of the training step is shown in Algorithm2.

Input: x,y (training inputs & targets), k(x,x′|θ) (covariance function), σn
(noise level), θ0 (initial hyperparameter(s))

[1] θ := θ0
[2] repeat
[3] K := K(x,x|θ) eq. (3.6)
[4] L := cholesky(K + σ2

nI) eq. (.1)
[5] α := LT \(L\y) eq. (.3)
[6] log(p(y|x, θ)) := −1

2y
Tα−

∑
i log(Lii)− n

2 log 2π eq. (3.22)
[7] vary θ according to some global optimizer
[8] until max[log(p(y|x))] reached
[9] return α, L, θopt

Algorithm 2: Training step of the GP regression algorithm. The Inversion
of the Gram matrix of x,x′ is not done directly but through Cholesky decom-
position since it is numerically more stable. The computational complexity is
dominated by the Cholesky decomposition in line 4 (O(n3)). The optimum
θopt is θopt = argmax[log(p(y|θ))]. The algorithm has been taken from [19].

The computation of (K+σ2
nI)
−1 is usually not done directly but rather by first perform-

ing a Cholesky decomposition and then calculating (K + σ2
nI)
−1y directly (see 6). This

is done since it is numerically more stable than direct inversion and because it allows for
easy calculation of |K + σ2

nI|. In practice some small σn is added for numerical stability
of the Cholesky decomposition even if the training data has no associated noise [19].
The prediction step for some test inputs x∗ evaluates the conditioned mean and covari-
ance at x∗. In practice this step is often called for multiple different test inputs x∗.
Pseudocode of this step is shown in algorithm3.

Input: L,α, θopt,x,y, k(x,x′|θ) (from training step), x∗ (test input)
[1] K∗ := K(x,x∗|θopt)
[2] K∗∗ := K(x∗,x∗|θopt)
[3] v := L\K∗ eq. (.4)
[4] f∗ := KT

∗ α Predictive mean eq. (3.14)
[5] cov(f∗) = K∗∗ − vTv Predictive covariance eq. (3.14)
[6] return f∗, cov(f∗)
Algorithm 3: Prediction step of the GP regression algorithm. Returns
the predictive mean and covariance at arbitrary locations x∗. Since the
computational complexity of this algorithm is O(n2m) for n training and
m test points it is usually much faster than algorithm 2. The algorithm has
been taken from [19].

3.4 Bayesian quadrature

Let

I =
∫ x1

x0
f(x) dx (3.23)

27

3 GAUSSIAN PROCESSES

be the integral of some arbitrary function f(x) over possibly multiple dimensions such
that x ∈ Rd. Bayesian quadrature (BQ) takes a statistical approach to calculating this
integral by using a GP as an interpolator for f(x) [1]. This has two advantages compared
to other commonly used numerical integration algorithms such as Monte Carlo or the
trapezoid rule (see 2.1):

1. By staying in the Bayesian framework we can treat I like a random variable for
which we can then calculate a prior and Likelihood. In practice however it is easier
to treat f itself as a random function for which we can set a GP as prior:

p(f((x)) = GP(f ,m, k) (3.24)

By being able to place a prior on m and k this allows us to inject information we
have about f like differentiability, periodicity etc. (see section 3.2) into our approx-
imation. This information is available in many cases where numerical integration
is needed and can often be derived from the nature of the problem.

2. The reason that a GP is such a good choice for placing a prior onto the function
is that it is closed under any affine transformation L:

p(L(f)) = GP(L(f),L(µ),L2(k)) (3.25)

which is handy because integration is a linear operation which means that

p

(∫ x1

x0
f(x) dx

)
= N

(
Z;
∫ x1

x0
µ(x) dx,

∫ x1

x0

∫ x1

x0
k(x,x′) dx dx′

)
. (3.26)

We can then proceed to condition our GP according to Eq. 3.7 on some training
data D which is drawn from f which gives us a posterior for I with the expectation
value

E[I|D] =
∫ x1

x0
µf |D(x) dx (3.27)

which means that the mean of our estimation of the integral is simply the integral
of the mean of the GP. Furthermore we get a variance that is given by

var[I|D] =
∫ x1

x0

∫ x1

x0
kf |D(x,x′) dxdx′ . (3.28)

This variance (or its square root) naturally lends itself to be used as a natural
precision criterion for I.

If one takes a close look at Eqs. 3.27 and 3.28 one might observe that they still contain
integrals, which means that we have replaced one integration by another. This does not
seem to be particularly useful at first. However if the integrations in Eq. 3.26 can be
performed quicker than the integration of I directly or, more importantly, if it is outright
impossible to compute I analytically, we do gain performance. An illustration of BQ
with the function f(x) = sin(2 · x) · x2 is shown in Fig 3.9.
Another important observation which can be extracted from Eq. 3.7 is that the condi-
tioned kernel kf |D and subsequently var[I|D] do not not directly depend on the training
data. Despite this there is an implicit dependence on ytrain if the MAP estimate is used

28

3 GAUSSIAN PROCESSES

0 1 2 3 4 5
x

−1

0

1

2

3

f
(x
)

GP
True function

0.0 0.5
p(I)

I

Figure 3.9: Illustration of the BQ procedure. Left: GP fit to the function f(x) = sin(2 · x) · x2
with three sample functions (green, blue, orange) with x ∈ [0, 5]. Right: Normal
distribution induced by BQ for the integral I =

∫ 5
0 f(x) dx. The three coloured dots

correspond to the integrals of the sample functions. The true value for I is shown in
red.

to assign values to the hyperparameters of the kernel as described in 3.3. This property
of GPs can be used to derive optimal quadrature rules for different classes of functions
purely through conditioning the kernel function [26]. This procedure runs under the
name of Bayes-Hermite quadrature [8]
In this thesis we will take a different approach which aims at finding the next best point
to evaluate sequentially by optimization. This procedure is known as active sampling
and will be explained in the following.

3.4.1 Active sampling

Optimization of non-analytic functions has long been a main concern in mathematics and
science and has seen extensive research throughout the last decades. This is partly fueled
by fast advancements in computational possibilities which enable evermore complex
numerical simulations but also often include the numerical optimization of complicated
and often high-dimensional functions. It is therefore no surprise that the idea of active
sampling has its origins in optimization.
In search of efficient optimization algorithms the science community has often looked
towards statistics and probability theory in the same way that probabilistic Monte Carlo
methods provide efficient estimations for quadrature of high dimensional integrals (see
section 2.2).
A different approach within the Bayesian framework relies on interpolating a function
with a GP and using the mean and standard deviation of the interpolator to obtain a
proposal for the next location to sample. The advantage of this is that with a good
choice of this rule sampling will always be performed at the locations which add the
most information to the GP model.

29

3 GAUSSIAN PROCESSES

Furthermore initial knowledge about the shape of the function can be incorporated
into the mean function and kernel of the GP. This procedure is often referred to as
active sampling or Bayesian optimization (BO) although the latter is only used when
the objective is to find the global optimum of a function. Since the concept of active
sampling is best explained in the optimization case we will use the maximization of an
exemplary function f to introduce the concept:
In active sampling the approach to finding a new point to sample is inferring it by
optimizing an acquisition function (AF) which tries to maximize the information gained
in each step. This AF usually only depends on the conditional mean and variance (or
standard deviation) of the GP (see eq. 3.14).
Finding an appropriate AF depends very much on the task at hand which in BO is global
optimization where we need to find a trade-off between exploration of the sampling space
and exploitation of known maxima.
One of the most commonly used AF for this is the expected improvement (EI) AF
[27]. This is the expectation value of the improvement over the current best sample
f+(x) = max(y) of the training set x,y of our GP:

aEI(x) = E(max(f(x)− f+(x)), 0)

By using the GP as estimator for f(x) this yields

aEI(x) =

(µ(x)− f+(x)− ξ)Φ
(
x)−f+(x)−ξ

σ(x)

)
+ σ(x)φ

(
x)−f+(x)−ξ

σ(x)

)
if σ(x) > 0

0 else
(3.29)

where Φ and φ are the PDF and CDF of the normal distribution, respectively. While
this acquisition function is optimal for BO there are better choices if the goal is not
optimization. An example of BO with the EI AF can be seen in Fig 3.10. In this
example four points are acquired sequentially. One can clearly see that the algorithm
converges to the maximum of the function in a few steps and does not get stuck in
local maxima. Pseudocode of the active sampling algorithm with N steps is shown in
algorithm 4
While the concept of active sampling is best explained in the optimization case this is
just as straightforward to apply to BQ. In this case there are usually more efficient AFs
than EI. Since the choice of acquisition function depends on the nature of the integrand
and the goal of this thesis is to integrate a special class of integrands (probability distri-
butions) the discussion of suitable acquisition functions for BQ will be done in section
4.3.
Unfortunately the computational complexity of sequential active sampling scales pro-
portional to n4 where n is the number of samples in the GP regressor. This is due to
the fact that refitting the hyperparameters of the GP scales proportional to n3 and thus
the sequential algorithm with n4.
This effectively limits the number of samples which can be acquired to O(103− 104) for
most modern computers. This has led to many different approaches aimed at reducing
this computational complexity which can be summarized under the term approximate

30

3 GAUSSIAN PROCESSES

Input: GP(0, k(x,x′|θ)) (GP regressor with kernel), x0,y0 (initial
training set), a(µ(x),σ(x)) (acquisition function), f(x)
(function to be sampled)

[1] xtrain := x0
[2] ytrain := y0
[3] for N times do
[4] Fit θGP alg. 2
[5] Draw x
[6] repeat
[7] µ(x),σ(x) :=GP prediction alg. 3
[8] ax := a(µ(x),σ(x))
[9] vary x according to some global optimizer

[10] until max[a(µ(x),σ(x))] reached
[11] xmax := argmax(a(x))
[12] ymax := f(xmax)
[13] xtrain = {xtrain,xmax}
[14] ytrain = {ytrain, ymax}
[15] end
[16] return GP regressor
Algorithm 4: Illustration of the active sampling algorithm for N acqui-
sition steps. The algorithm first optimizes the hyperparameters of the
GP surrogate model according to algorithm2 and then optimizes the ac-
quisition function using algorithm3 to evaluate µ and σ of the position
x. When the optimization is done the x-coordinate of the maximum of
the acquisition function is recorded and the true function is interrogated
at this point. The computational complexity is roughly O(N4) if one as-
sumes that the time it takes to optimize the acquisition function is much
smaller than the time it takes to optimize the hyperparameters of the
GP. For large N this is usually a good assumption since the fitting of the
hyperparameters scales with O(N3) while predictions with the GP scale
with O(N2).

31

3 GAUSSIAN PROCESSES

GPs10 [28, 29, 30, 31].
Approximate GPs have gained a lot of attention in recent years as combining the pre-
dictive power of GPs with a low computational cost is a very tempting idea even if
it sacrifices the analytical tractability of the equations. A full review of the literature
would be beyond the scope of this thesis but it is useful to keep in mind that some of
these methods could in principle be applied to the algorithm presented in chapter 4.

−1

0

1

2

3

y

GP

True function

0 1 2 3 4 5
x

0.0

0.1

a
(x

)

aEI(x)

−1

0

1

2

3

y

GP

True function

0 1 2 3 4 5
x

0.0

0.1

a
(x

)

aEI(x)

−1

0

1

2

3

y

GP

True function

0 1 2 3 4 5
x

0.0

0.1

a
(x

)

aEI(x)

−1

0

1

2

3

y

GP

True function

0 1 2 3 4 5
x

0.000

0.025

0.050

a
(x

)

aEI(x)

Figure 3.10: Four iterations of BO of the function f(x) = sin(2 · x) · x2 with EI in the interval
[0, 5]. The real function (blue) and the GP approximation (black) with its standard
deviation (grey shaded area) are shown on the top and the values of the acquisition
function (orange) on the bottom of each plot. The red dashed line indicates the
location of the maximum of aEI(x) where the function will be sampled next. Note
how the algorithm finds a trade off between exploration of the full function space
and exploitation of regions with high values.

10These approaches can broadly be divided into two categories: Sparse GPs aim at introducing some
sparsity in the covariance matrix [28, 29] and variational GPs where the goal is approximation of the
marginal likelihood for optimizing the hyperparameters of the model [30, 31].

32

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

4 Bayesian quadrature for probability distributions

As our goal is to do Bayesian inference with GPs we want to effectively perform Bayesian
quadrature with the constraint that the function to integrate is an (unnormalized) prob-
ability distribution. The advantages of BQ for this task compared to other algorithms is
motivated in section 4.1 followed by a discussion of the use of performing a power reduc-
tion operation of the posterior in section 4.2. Afterwards a suitable acquisition function
for this task is derived in section 4.3. Preprocessing of the training data is explained in
section 4.4. Afterwards a novel way to parallelize the algorithm is introduced in section
4.5.
A convergence criterion is then introduced in section 4.6 followed by a discussion of the
drawbacks of this approach which are explained in section 4.7 and 4.8.
Lastly we perform some tests on artificial and real examples in section 4.9 where we
compare the performance to other state of the art methods.

4.1 Why Bayesian quadrature?

Solving integrals of the form

Z =
∫
L(θ)π(θ) dθ (4.1)

where L(θ) is a likelihood function and π(θ) a prior distribution is by no means a novel
problem. In fact it might be one of the most extensively studied integration problems
as integrals of this type appear in numerous scientific fields11. Crucially this problem
also appears in many machine learning algorithms, which has led the machine learning
community to conduct extensive studies into possibilities for solving this type of integral
using Bayesian quadrature [3, 32, 1].
The reason for choosing this approach instead of the popular alternatives, the most
important of which is MCMC, is that it solves some of MCMCs inherent problems12.
These fundamental flaws have been neatly summarized in a very influential paper in
1992 [33] where the author points out two main objections to using MCMC.
First, the estimator for Z does not only depend on the values of the posterior L(θ)π(θ)
but also on the sampling distribution g(θ′|θ) (see section 2.2) which is arbitrary. This
means that for different choices of sampling distributions different sets of sampling points
are obtained even though the integral is the same. This dependence violates the Likeli-
hood principle.
The second objection is that classical Monte Carlo methods such as MCMC entirely
11In this case integration does not mean performing the full integral of L(θ)π(θ) along all dimensions

but instead only integrating along some subset of dimensions to get confidence intervals and marginal
distributions.

12The term MCMC is a very broadly defined term and encompasses a large number of very different
algorithms which have different sampling schemes. The problems with these which are pointed out
in the following do not necessarily apply to every MCMC algorithm in existence. For instance HMC
does not us a proposal distribution for jumps of the chain. The criticism here is mainly directed
towards the Metropolis-Hastings algorithm and variants thereof. Nevertheless these shortcomings
can be applied to all MCMC algorithms even if the arguments have to be slightly adjusted.

33

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

ignore the values of the posterior during inference. Instead they are only used for deter-
mining where the chain should jump next. This throws away valuable information. To
illustrate this imagine that the chain reaches some point θ in the parameter space which
is visited again after a number of iterations. Even though the value of the Likelihood
at that point has been evaluated and the point contains no additional information, the
algorithm is oblivious to this as it discards the values of the likelihood.
While these two objections cannot directly be translated to nested sampling, where no
arbitrary additional distribution has to be introduced and the value of the the integrand
enters into the estimate for the integral, there is a third important flaw which is inherent
to both MCMC and nested sampling. This is the fact that both algorithms do not
sample the space in a deterministic way but rather rely on Monte Carlo techniques
to map the posterior. While this brings with it the benefit of fast computation, as the
computational complexity of sampling new points is independent of the number of points
which have previously been sampled, it does have the downside that statistical sampling
by definition cannot be the most efficient way to sample a space.
All of these problems are solved by sequential Bayesian quadrature. The active sampling
procedure (or alternatively Bayes-Hermite quadrature) makes the addition of new sam-
ples a purely deterministic optimization and the values of the posterior are not wasted
as they are incorporated into the GP.

4.2 Power reduction operation

PDFs are always positive. This is an important consideration that we need to take into
account when integrating them with Bayesian quadrature and which we can use to our
advantage. This knowledge is usually accounted for by performing a power reduction
operation P (L(θ)) on the likelihood and approximating this function by a GP. Several
different proposals have been made for suitable P in the literature [3, 1].
In this work we will use the log transformation as power reduction operation following
[1] since many Likelihoods naturally "live" in the log space13. Particularly in physics it is
very common that likelihoods are directly generated in the log space due to the reasons
given in section 2.1.2. Therefore no additional transformation is required when working
with these likelihoods which makes this especially convenient.
If we want to model Z with BQ and our goal is to achieve this by placing a GP prior
on the likelihood function L(θ) this means that our Bayesian estimate for Z ≈ E(Z)
becomes

Z =
∫
mL|D(θ)π(θ) dθ (4.2)

where D is some training data (samples) from L. This result can simply be obtained
by modifying Eq. 3.27 to our specific case. If we now perform the log transformation on

13More precisely many likelihoods belong to the exponential family of probability distributions [34].

34

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

L(θ) and set a GP prior on this the expectation value for Z becomes

Z(log(L(θD))) =
∫

(exp(log(L(θ))π(θ) dθ))N (log(L); logLD, covD(logL)) d logL .
(4.3)

Unfortunately this integral is intractable. A possibility for restoring tractability that
has been proposed in [1] is to do a Taylor expansion of exp(log(L)) around some point
L0

exp(log(L)(θ)) ≈ exp(logL0(θ)) + exp(logL0(θ)) exp(logL(θ)− logL0(θ)) (4.4)

This approximation restores tractability, however we will use a different approach in this
work which relies on integrating the log-GP numerically with MCMC. This approach
is taken since we want to be able to marginalize any number of dimensions without
recomputing the whole integral, for which MCMC is a good choice.
Furthermore we want to avoid having to actually do the (very tedious) analytical in-
tegration of Eq. 4.3 along any subset of dimensions of θ. Nested sampling would be a
similarly good choice. In addition both MCMC and nested sampling naturally operate
in the log space which again makes transformations unnecessary.

Another advantage of sampling in the log-space that has been pointed out in [1] is that
the characteristic length scale l of the kernel when using a kernel of the form

k(d) = c · k̃l(d) (4.5)

where k̃l is an isotropic kernel like an RBF or Matérn kernel, is larger when sampling
the log-likelihood as opposed to the likelihood as illustrated in Fig 4.1. This allows the
GP approximation to generalize better to distant parts of the function.

x

L
G

P
(x

)

l

x

lo
g
L

G
P
(x

)

l

Figure 4.1: Illustration of how fitting a GP to the likelihood L(x) (left) causes the correlation
length l to be shorter than when fitting the GP to logL(x) (right). This Longer
correlation length usually means that the GP will generalize better to function values
which are far away.

Now one might ask why we have replaced MCMC by BQ just to perform the integration
step with MCMC again which, at first glance, does not seem to be an advantageous

35

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

thing to do. It is however if we keep computational speed in mind. For both cases the
number of samples which need to be evaluated by the MCMC chain are roughly the
same if the GP is a good approximation to the Likelihood function.
However the samples which actually have to be drawn from the likelihood function differ
greatly as placing a prior on the functional shape of the likelihood allows us to use
the advantages of active sampling to deterministically find an optimal set of inducing
locations. This is a considerable advantage if tlogL � tGP where tlogL is the time it
takes to calculate the likelihood function for a single sample and tGP the time it takes
our GP model to make a prediction.

4.3 Appropriate acquisition functions

Now that we have established that the likelihood function (or the posterior distribution)
shall be sampled in the log space, the next question which arises is which acquisition
function is suitable to sampling (log) probability distributions. To derive this consider
the one-dimensional gaussian likelihood L(x) = N (x; 0, 1) with a uniform prior in [−3, 3]
as shown in Fig. 4.2.
Obviously the contribution of every small element dx to the integral is proportional to its
posterior value since L(x)π(x) is by definition positive. This means that a natural choice
for an acquisition function is one which is designed such that the standard deviation of
the GP is inversely proportional to the likelihood value at this point.14 The easiest
example which achieves this is

aL(x) = L(x) ·
√

varL|D(x) . (4.6)

Unfortunately we do not know the value of the likelihood at every point (otherwise our
sampling would be pointless) but luckily our GP also gives an estimate for the value of
L(x) which means that the best estimate for acquisition function is

aL(x) = LL|D(x) · σL|D(x) . (4.7)

Of course we do not want to sample L(x) but its logarithm which means that we need
to transform our acquisition function into log space too. This is very straight forward
since we can just perform gaussian error propagation:

alogL(x) = exp(µ̃(x)) · exp(µ̃(x))σµ̃(x) = exp(2 · µ̃(x))σµ̃(x) (4.8)

with µ = L, µ̃ = logL.
There is a catch though. The assumption which led to this conclusion is that LGP(x) ≈
L(x) but is this is not necessarily a good assumption, especially when the number of
acquired points is low. In fact it is an inherent mechanism of the algorithm to explore
regions in which the model is very uncertain to achieve fast convergence. The longer the
active sampling is running the better the space will be explored and our assumption will
14Strictly speaking it should be proportional to the posterior value at this point. We will omit this detail

since we assume uniform priors in all examples which means that the uniform prior is essentially only
a normalization constant. The formalism can trivially be extended to non-uniform priors by replacing
L(x) with L(x)π(x) in all subsequent calculations.

36

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

−3 −2 −1 0 1 2 3

dx

x

L
(x
)π
(x
)

Figure 4.2: Illustration of the reasoning behind our choice of acquisition function. Every small
interval dx contributes proportionally to its posterior value to the integral so the
acquisition function should be designed to aim for high precision in regions of high
posterior.

eventually hold true though.
In light of this one can argue that the factor 2 appearing in the first exponent should be
relaxed in the early phases of active sampling to encourage exploration and slowly con-
verge towards its final value. One way to achieve this is by introducing a monotonically
increasing term ζ ∈ (0, 1] into the exponent:

alogL(x) = exp(2ζ · µ̃(x))σµ̃(x) (4.9)

A possibility inspired by simulated annealing [9] could be ζ = exp(−N0/N) where N are
the numbers of samples on which the GP is conditioned and N0 a characteristic "decay
constant" or temperature. This term will will suppress the first term exp(2ζ · µ̃(x)) for
N � N0 and monotonically approach one for N � N0.
In addition to the aforementioned correction factor we also need to account for statistical
noise that the likelihood (or the log-likelihood) may have. While this is not the case for
the examples we will be discussing in this chapter we will come back to this in chapter
5. For the moment let us assume that this statistical noise is i.i.d. gaussian noise σn in
which case the lower bound on σGP is effectively the amplitude of the statistical noise.
This means that we need to adjust our acquisition function to take this into account by
replacing σµ̃(x) by (σµ̃(x)− σn) such that the acquisition function is given by

alogL(x) = exp(2ζ · µ̃(x))(σµ̃(x)− σn) (4.10)

A visualization of this is shown in Fig. 4.3. Without this addition the maximum of the
AF will eventually converge towards one value which the algorithm will visit multiple
times.
This behaviour should be avoided at all costs since GP regressors are numerically unsta-
ble to training samples which are very close together. In addition we would be wasting

37

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

evaluations when sampling the same location multiple times.

Lastly one usually takes the logarithm of Eq. 4.10 for numerical reasons:

log(alogL)(x) = 2ζ · µ̃(x) + log(σµ̃(x)− σn) (4.11)

This does not impact the optimization itself since the logarithm is monotonic. The loga-
rithmic version of this has the disadvantage that it falls off towards −∞ for σµ̃(x)→ σn
but the advantage that it does not become flat far away from its maxima, which can be
challenging to navigate for numerical optimizers. For both versions gradients are simple
to calculate if there are gradients for the GP (the mean and variance) available which
can aid in accelerating the numerical optimization of the acquisition function.

To the best of my knowledge, this acquisition function has so far not been used in the
literature.

lo
g
(L

(x
))

GP

True function

x

a
(x

)

a(x)

lo
g
(L

(x
))

GP

True function

x

a
(x

)

a(x)

Figure 4.3: Illustration of the difference between including the statistical noise σn into the acqui-
sition function a(x) (right) versus ignoring it (left). It is clear that the maximum of
the acquisition function will converge towards the maximum of logL if the noise is
ignored even though there is no information to be gained in this point. In addition
to this, GPs cannot properly deal with samples that are very close together meaning
that the algorithm will numerically break down if the effect of σn is not subtracted.

4.4 Preprocessing

Preprocessing of data is a standard procedure when applying machine learning algo-
rithms. This is done in an attempt to limit the input data to values which are not
numerically problematic to compute. These requirements are different for the input
locations xtrain than for the target values ytrain.

Input locations
The input locations (points in θ-space) need to fulfil two conditions for the active sam-
pling algorithm to be effective. First the scales along each dimension need to be roughly
similar. This is necessary for the optimization algorithm for the AF to be efficient.

38

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

Intuitively this becomes clear if one imagines a posterior distribution which is very
stretched out along one axis while being very broad along another one. In this circum-
stance it will be very hard for a numerical optimizer to navigate along the narrow strip
of optimal solutions, at least if this difference in length scales is not accounted for by
the optimizer itself. This is the case for most standard numerical optimizers since they
operate with a single characteristic length scale that the algorithm jumps at each iter-
ation. Since we only need the length scales to be approximately similar i.e. a factor of
two or three will not have a significant impact, it is enough to just take the bounds of
the prior distribution (or some bounds which encompass the majority of the mass for
unbounded priors) and normalize them to cover the unit hypercube.

Another important observation is that for an isotropic kernel function the distribution
should not show any correlation along the different axes and have the same characteristic
length scale along every dimension. This is not necessarily given but can be enforced if
we assume that our function is a unimodal, multivariate gaussian distribution, which is
the approach that is used in [2]. In this scenario we can empirically estimate the mean
vector µ and covariance matrix Σ along each dimension15. For a model containing N
sampling locations θ1, . . . ,θN with θ = (θ1, . . . , θd)T the mean and covariance are given
by

µi =
1∑N

k=1wk

N∑
k=1

θikwk Σij =
1∑N

k=1wk

N∑
k=1

wk(θ
i
k − µi)(θ

j
k − µ

j) (4.12)

where wk is the value of the posterior distribution at location θk. The transformation
that is applied to θk is then

θik →
Rij(θjk −mj)

σi
(4.13)

where R is the matrix which solves Σ = RΛRT where Λ is a diagonal matrix and
σi =

√
Σii. This transformation is often called whitening transformation [35] since it

transforms the data into a decorrelated gaussian with unit variance.

Unfortunately there are three major problems attached to this approach:
1. Correctly estimating the mean vector and the covariance matrix along each dimen-

sion is a challenge due to the high variability of the likelihood function compared
to the log-likelihood function. One way to prevent this is to draw a large number
of samples from the GP model and estimate the covariance from this however this
introduces considerable computational overhead and also one needs an additional
sampling algorithm like MCMC to correctly estimate the covariance matrix and
mean vector.

2. The assumption that the posterior distribution is a multivariate gaussian distri-
bution is very restrictive and generally not a very good assumption. For any

15Note that this is not the same as the mean vector and kernel of the GP. While the covariance matrix
from the kernel for a GP model in d dimensions with N inputs has shape N ×N while the covariance
matrix in this method is of dimension d× d.

39

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

posterior shape which does not closely match a multivariate gaussian distribution
this transformation will inevitably fail.

3. The third issue which this transformation brings with it is the fact that we are
empirically fitting the covariance matrix to the data. This is in essence MLII which
means that it is technically not fully bayesian.

It is due to the aforementioned reasons that this transformation was not used in the
final algorithm presented in this thesis but instead an anisotropic kernel with a different
characteristic length scale is used along every dimension. This proved to be more versatile
and less prone to failure than the whitening transformation.
This means that our choice for a kernel is a composite kernel consisting of a constant
kernel multiplied with an anisotropic RBF or Matérn kernel:

k(x,x′) = C ·
d∏
i=1

RBF(xi,x′i) or k(x,x′) = C ·
d∏
i=1

Matérn(xi,x′i|ν) (4.14)

with x = (x1, . . . ,xd)T ,x′ = (x′1, . . . ,x′d) ∈ Rd. Whether the RBF or Matérn kernel is
the correct choice depends on the expected "smoothness" of the posterior distribution.

Target values
The target values (values of the likelihood or posterior distribution) are transformed to
be centered around zero with unit variance. This has two reasons:

• Scaling the target values in this way is a standard procedure with GP regression
as it limits the scale of the constant kernel component in the composite kernel.

• The transformation of the data such that it has zero mean effectively acts as a
constant mean function of the GP where the value is the empirical mean of the
data. This means that the GP will approach this value far away from any sampling
locations. This approach is chosen to encourage exploration when the majority of
samples are close to the maximum of the posterior distribution and exploitation
when the majority of samples is situated at lower values. An illustration of this is
shown in Fig. 4.4.

4.5 Parallelizing the algorithm

When doing Bayesian inference on expensive likelihoods there is usually an advantage to
having some parallelization available in order to sample from the likelihood at different
points at once. Many likelihoods have some internal mechanism for parallelization how-
ever we want to present a different approach which allows to acquire a batch of points
for which the likelihood can then be interrogated. There have been a myriad of different
proposals for batch acquisition for GPs in the past [36, 37, 38, 4] which all have their
advantages and disadvantages.
Generally these algorithms can be divided into two broad categories. Algorithms like
the q-EI algorithm [36, 37, 4, 39] construct an acquisition function which can be jointly
optimized for several points at once while the second category [38, 4, 39] works by
sequentially acquiring multiple points without having to sample from the function.

40

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

−15

−10

−5

0
lo

g
(L

(x
))

GP

log(L(x))

−6 −4 −2 0 2 4 6
x

−20

−15

−10

a
(x

)

−15

−10

−5

0

lo
g
(L

(x
))

GP

log(L(x))

−6 −4 −2 0 2 4 6
x

−20

−15

−10

a
(x

)

Figure 4.4: Illustration of the behaviour of a GP fitted to a normal distribution without pre-
processing the target values (left) and with preprocessing (right). One can clearly
see that the GP model with preprocessed data encourages exploration since it tends
towards the mean of its samples in far away regions.

The advantage of the former method is that it will accurately estimate the impact that
the acquisition of q points and their location has on sampling and thus find a more
efficient set of samples that the latter method. This however comes at the expense that
the computational overhead is much bigger. The reason for this is that for a GP which
has d dimensions acquiring q points at once involves global optimization in d · q dimen-
sions. One can easily imagine that this will quickly reach a point where performing this
optimization becomes unfeasible.

Since our goal in this thesis is to eventually be able to tackle problems in higher dimen-
sions we will focus on the latter, sequential method for batch acquisition. One of these
methods is the Kriging believer method [39].

Kriging believer
The fundamental assumption of the Kriging believer method is that instead of optimizing
a joint acquisition function for q points they can be acquired sequentially assuming that,
at the location of the i-th point, the value of the likelihood function equals the predictive
mean of the GP. While this method does not take into account the implications of
sampling a batch of points given the current surrogate model, it has the advantage that
the optimization problem is still a d-dimensional one.
In addition this method will be increasingly accurate as points are added to the GP since
the underlying assumption of this method is, similar to the assumption for constructing
the acquisition function, that LGP(x) ≈ L(x). Another advantage of this method is that
it can be used for any acquisition function without additional computation in contrast
to the joint approach where the acquisition function has to be derived from the single
point AF by hand.
This approach furthermore assumes that sequentially acquiring points is much faster
than sampling from the likelihood, otherwise the algorithm will be inefficient. An illus-
tration of the Kriging believer algorithm sampling on the log of a normal distribution is
shown in Fig. 4.5.

41

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

−12.5

−10.0

−7.5

−5.0

−2.5

lo
g
(L

)(
x

)

GP

True function

−4 −2 0 2 4
x

−20

−10

lo
g
(a

)(
x

)

−12.5

−10.0

−7.5

−5.0

−2.5

lo
g
(L

)(
x

)

GP

True function

−4 −2 0 2 4
x

−20

−10

lo
g
(a

)(
x

)

−12.5

−10.0

−7.5

−5.0

−2.5

lo
g
(L

)(
x

)

GP

True function

−4 −2 0 2 4
x

−20

−10

lo
g
(a

)(
x

)

−12.5

−10.0

−7.5

−5.0

−2.5

lo
g
(L

)(
x

)

GP

True function

−4 −2 0 2 4
x

−20

−10

lo
g
(a

)(
x

)

Figure 4.5: Illustration of the Kriging believer method. Three points are acquired sequentially
(top left, top right, bottom left) by using the prediction from the GP instead of
sampling the likelihood at each iteration. After the three samples have been acquired
the likelihood function can be interrogated for the true values at these points (bottom
right). The hyperparameters of the GP regressor only need to be refit at the last
step. Obviously using this approach comes at the expense of requiring more points
to converge towards the right value of Z. This can however be compensated by the
computation time that is saved by evaluating the posterior in parallel.

The update equation
One convenient property of GP regression that has been pointed out by multiple authors
[29, 40, 5] is the fact that data can be added to GPs without having to perform the whole
inversion of the Covariance matrix in Eq. 3.8 when we do not want to perform regression
(hence cannot change the hyperparameters of the kernel) but only want to condition the
GP on additional data. In this case we can use the blockwise matrix inversion formula:
Let An×n, Bn×m, Cm×n, Dm×m be four matrices and let A−1 and (CA−1B)−1 be in-
vertible. Then the inverse of the blockmatrix M is given by

M−1 =

[
A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1 .

]
(4.15)

where S =
(
D−BTA−1BT

)
is called the Schur complement of A. In our case the

assumption that all inverses exist always holds true if M is a valid covariance matrix.
In addition the formula can be simplified for the covariance matrix since C = BT which

42

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

yields [
A B
BT D

]−1

=

[
A−1 +A−1BS−1BTA−1 −A−1BS−1

−S−1BTA−1 S−1 .

]
(4.16)

A similar formula exists for the Cholesky decomposition which is handy since this is
mostly used in practice when performing GP regression. This formula is especially useful
if A−1 is already known from previous computations and n � m since the algorithm
scales with O(n2m).

Combining the two
With the help of the blockwise matrix inversion formula it can be shown that the Kriging
believer algorithm does not affect the mean prediction of the GP and thus we do not
need to change the hyperparameters of our surrogate model between acquisitions. For a
full proof see 6. Intuitively this makes sense since we are not adding any new information
to the model. This in turn means that we can simply use the blockwise matrix inversion
formula which saves time on the inversion of the K(x,x) matrix. In particular the
computational overhead when adding a single point to the GP containing n points is
only O(n2) as opposed to O((n+ 1)3) for the full inversion. To my knowledge this has
not been pointed out in the past and is a good way to save time on the acquisition of
points.
With that in mind we can not only take advantage of the Kriging believer method to
evaluate the likelihood in parallel but in addition also speed up the algorithm itself. The
final algorithm taking this into account with m points which are acquired by the Kriging
believer algorithm and a total of m ·n acquired points is presented in algorithm 5 which
is one of the main results of this thesis.

4.6 Convergence criterion

To efficiently be able to perform Bayesian inference we need to have some convergence
criterion in place which we can use to assess to what degree our algorithm has converged.
A natural candidate would be the variance of the integral over Z. For a d-dimensional
likelihood this is unfortunately a 2 · d dimensional integral which is numerically challeng-
ing to handle. Furthermore our approach to optimizing the hyperparameters of the GP
violates bayesianity and hence cannot be trusted, which is discussed in detail in section
4.8. Therefore we follow the approach from [2] and use the Kullback Leibler (KL) di-
vergence between consecutive acquisition steps to estimate the progress of the Bayesian
inference. For two continuous probability distributions P (x) and Q(x) this is defined
as the integral

DKL(P |Q) =
∫
P (x) log

(
P (x)

Q(x)

)
dx (4.17)

Since this is again computationally quite expensive we approximate the posterior distri-
bution to be a multivariate gaussian distribution for which the KL divergence is analyt-

43

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

Input: GP(0, k(x,x′|θ)) (GP regressor with kernel), ninit (Number of
initial samples), a(µ(x),σ(x)) (acquisition function), f(x)
(function to be sampled)

[1] Randomly draw ninit initial samples x0
[2] y0 := f(x0)
[3] xtrain := x0
[4] ytrain := y0
[5] for n times do
[6] Fit θGP with xtrain, ytrain alg. (2)
[7] xkb := copy(xtrian)
[8] ykb := copy(ytrian)
[9] for m times do

[10] Draw x
[11] repeat
[12] µ(x),σ(x) :=GP prediction alg. (3)
[13] ax := a(µ(x),σ(x))
[14] vary x according to some global optimizer
[15] until max[a(µ(x),σ(x))] reached
[16] xkb = {xkb, argmax(a(x))}
[17] ykb = {ykb,µ(argmax(a(x))} Kriging believer
[18] Update K(x,x)−1 with Eq. (4.16)
[19] end
[20] xtrain = xkb
[21] ytrain = f(xkb) Can be parallelized
[22] end
[23] return GP regressor

Algorithm 5: Illustration of the active sampling algorithm with m
points being acquired at once with Kriging believer. n Kriging believer
steps are performed so a total of n ·m points are added to the GP by
active sampling. The advantage to the simple active sampling shown
in algorithm4 is the faster computation time and the possibility for the
evaluation of the likelihood (line 19) to be performed in parallel. In
practice the values for ytrain are saved at every step which means that
for each iteration of the outer loop only m points have to be sampled
from the likelihood.

44

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

ical and given by the formula

DKL (N0|N1) =
1
2

(
tr
(

Σ−1
1 Σ0

)
+ (µ1 − µ0)

T Σ−1
1 (µ1 − µ0)− k+ ln

(detΣ1
detΣ0

))
(4.18)

where µ0, Σ0 and µ1, Σ1 are the mean and covariance of N0 and N1 and k is the number
of dimensions. mu and Σ can be empirically estimated from the training data with
Eq. 4.12. This has the same problems that have been explained for preprocessing in
section 4.4 but since this is only a stopping criterion it is not crucial that this gives the
correct result right away.
The KL divergence can be used as a convergence criterion by stopping the algorithm
when DKL < ε between a number of acquisition steps. [2] sets ε = 0.01 which we will
also do. Note that this convergence criterion assumes that the posterior distribution
is a multivariate gaussian distribution which is by no means given. Therefore finding
a better criterion is likely possible and advisable. However for our purposes this will
suffice. The performance of this criterion is assessed in section 4.9 and illustrated in
Fig. 4.11.

4.7 The problem with infinity

An issue that has to be addressed when sampling the log-posterior distribution is that
it falls off towards −∞ towards the edges. This is a problem since GPs cannot deal
with infinite values as Eq. 3.7 (or Eq. 3.14 in the noisy case) become ill defined. This
means that there needs to be a solid mechanism in place to deal with these points. In
the context of BO some research has been conducted towards solving this problem which
relies on defining a region in which it is safe to explore which is based on the observations
that have been made up to this point [41, 42]. This approach has the advantage that
it is keeps the GP stable but it comes at the expense of added computational overhead.
Additionally finding a suitable region in high dimensions is a very challenging task.
A different approach is to replace the −∞ value by some large, negative finite value.
While this is a computationally cheap and easy to implement method it unfortunately
does not work very well in practice. This is because our initial assumption about the GP
rests on the idea that the posterior distribution is a continuous, differentiable function
which is violated by introducing discontinuity. Including these points will either distort
the correlation length if the fixed points are added during the regression step or lead
to unwanted oscillations if they are added with the blockwise matrix inversion formula.
This behaviour is shown in Fig. 4.6 (left).
The third idea for dealing with these points is to use the Kriging believer framework
to make a prediction for these points. This preserves the continuity of the function but
it drastically overestimates the posterior distribution in this point. This behaviour is
shown in Fig. 4.6 (right).
Lastly there is the possibility to simply ignore samples which yield −∞. This has
the advantage that the model stays exact but the disadvantage that the algorithm will
repeatedly sample this location since the information about it is discarded. It can be
somewhat alleviated when using batch acquisition with the Kriging believer algorithm
since there is a good chance that this point will not be in the next batch. Eventually the

45

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

algorithm will start exploring though, which inevitably will lead it into regions where
the log-posterior distribution is −∞. This topic will therefore require more research and
a rigorous solution for a robust and versatile framework but for the sake of simplicity
we will simply use the last option and ignore sampling locations where the posterior
distribution vanishes.

−100 −50 0 50 100
x

−700

−600

−500

−400

−300

−200

−100

0

lo
g
(L

(x
))

GP1

GP2

log(L(x))

−100 −50 0 50 100
x

−700

−600

−500

−400

−300

−200

−100

0

lo
g
(L

(x
))

GP

log(L(x))

Figure 4.6: Illustration of different computationally cheap methods to deal with −∞ values in
the log likelihood with a gaussian posterior. The left plot shows the behaviour when
samples which yield −∞ are replaced by a constant value which in this case is the
minimum of all finite values. GP1 (black) shows the behaviour when adding the
points with the blockwise matrix inversion lemma and GP2 (red) when fitting the
hyperparameters of the GP with the artificial samples included. The oscillations
which this approach introduces are clearly visible. When the artificial values are
set even lower the oscillations become more pronounced. The right plot shows the
behaviour when setting all infinite samples to the mean of the GP at this point
(essentially this is like the Kriging believer algorithm). This does not introduce any
oscillations but gives a wrong shape for the posterior distribution.

4.8 Preserving bayesianity

A lot of effort so far has been directed into the conservation of bayesianity, i.e. using
only Bayesian statistics to construct our full model. The final goal of this thesis is
however to create a practical, fast and robust framework which unfortunately means
that the bayesian approach had to be sacrificed when fitting the hyperparameters of
the GP regressor since this is done with MLII. This could have been avoided but would
have added computational overhead. This translates to a general underestimation of the
variance of predictions by the GP.
The second point where bayesianity is omitted is when performing the integration of
the GP with MCMC. In principle it would be possible to include the variance of the
predictions during this step but it again requires some computational overhead. Both
of these points are connected since they both relate to the variance of the predictions
by the GP. It is therefore only a good assumption to omit these when this variance is
very small. It is therefore in our best interest to sample until the variance of the GP is
a negligible contribution to the evidence. This is achieved by using the KL divergence
as a convergence criterion and sampling until a good precision is reached.

46

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

A more rigorous treatment of the two aforementioned issues would certainly be desirable
but is beyond the scope of this thesis.

4.9 Experiments

Now that we have established the full algorithm it is time to test it and compare its
performance to the state of the art. Here we will use toy examples where we restrict
ourselves to simple, unimodal gaussian posteriors since much of our algorithm assumes
approximate gaussianity. Furthermore we will investigate how the algorithm performs
on two real likelihoods. In these tests we are interested in three metrics:

1. Scaling of the required number of samples with dimensionality
2. The computational overhead that our algorithm introduces
3. The impact of the hyperparameters of the algorithm on the performance

These hyperparameters are:
• The choice of kernel (RBF or Matérn)
• The number of initial samples before acquisition ninit

• The number of times nrestart,GP,nrestart,a that the optimizers for the GP hyperpa-
rameters and for the acquisition function are restarted from random initial points.

• The number of acquired points with Kriging believer m which is done at every
iteration before interrogating the likelihood and refitting the hyperparameters of
the GP. This will henceforth be called the number of Kriging believer steps

• The correction factor of the acquisition function ζ
However only the last two of these parameters are really variable. The choice of kernel
depends on the prior knowledge of the shape of the likelihood and should thus be set
according to the same criteria as the prior distribution. T
he number of initial samples before acquisition is barely relevant as the algorithm is
designed to explore the parameter space efficiently. However an initial set of samples
which roughly follows the posterior distribution can accelerate convergence considerably.
How often the optimizers for the acquisition function and GP regressor should be
restarted at random locations depends on the optimizer used and on the computational
budget available. A good optimizer global should in principle be able to find the global
maximum from any starting position. In practice this value will be set so that it ensures
that the optimizer reliably finds the global maximum.
This means that we are essentially only left with two free parameters to choose which
are m and ζ. These will be investigated in the following.

Toy examples
As the Kriging believer framework allows us to evaluate the posterior in parallel we
should take this into account when benchmarking the algorithm. In addition the com-
putational overhead of running the algorithm, which is performed sequentially and hence
does not decrease with the number of cores available should be taken into consideration.

47

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

2 4 6 8 10 12
Number of dimensions, d

101

N
um

be
r

of
lik

el
ih

oo
d

ev
al

ua
tio

ns
pe

r
co

re
,n

p

NL ∝ e0.2·D

m = 1

m = 2

m = 4

m = 8

2 4 6 8 10 12
Number of dimensions, d

100

101

102

103

C
om

pu
ta

tio
na

lo
ve

rh
ea

d
of

th
e

al
go

rit
hm

[s]

NL ∝ e0.3·D

m = 1

m = 2

m = 4

m = 8

Figure 4.7: Scaling of the number of posterior evaluations (left) and computational overhead of
our algorithm measured in wall clock time (right). The approximately exponential
scaling of the number of points becomes apparent towards higher values of d. The
computational overhead that our algorithm produces is purely sequential and hence
increases with the number of Kriging believer steps. Nevertheless, for slow enough
likelihoods, this overhead is compensated for by the low number of total evaluations
required for the algorithm to converge which is shown in Fig. 4.9.

Both of these metrics are shown against the number of dimensions with 1, 2, 4 and 8
acquired points in parallel. To be able to compare against MCMC the tests were per-
formed the same as the tests done for Fig. 2.4 meaning that we used mildly correlated16

multivariate gaussian distributions were used. ζ was set to 1 and the stopping criterion
for reaching convergence was DKL = 0.01.
During this test and all consecutive tests we set nrestart,GP = 10 and nrestart,a = 5 to
make the optimizations robust. The results are shown in Fig. 4.7. One can see that
both the number of points required as well as the computational overhead increase
exponentially with the number of dimensions. Furthermore it is clear from the plot on
the left that the Kriging believer algorithm decreases the number of points required per
core although the algorithm does not parallelize perfectly. It is furthermore obvious
from the right plot that the computational overhead of the algorithm increases with the
number of Kriging believer steps m. This makes sense since overall more points are
required until convergence is reached and the computational overhead of our algorithm
does not decrease with the number of cores.
This effect is however mitigated by the fact that the computational overhead for acquir-
ing a number of training points ntrain decreases when raising m because of the use of
the blockwise inversion formula. This is visible in Fig 4.8 (left). On the right of this
figure the computational overhead of our algorithm is dissected into its main contribut-
ing components which are the acquisition of new samples and the GP regression step.
One can see that the regression step gives the dominant contribution which was to be
expected due to the O(n3) scaling of the Cholesky decomposition.

Having investigated both the computational overhead and the number of evaluations

16Mildly correlated means here that we transformed the randomly drawn covariance matrix such that
the correlation coefficient between dimensions does not exceed 0.1.

48

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

0 20 40 60 80 100

Number of training points ntrain

0

20

40

60

C
om

pu
ta

tio
na

lo
ve

rh
ea

d
of

th
e

al
go

rit
hm

[s]
d = 2,m = 1

d = 2,m = 8

d = 8,m = 1

d = 8,m = 8

0 20 40 60 80 100

Number of training points ntrain

0

20

40

60

C
om

pu
ta

tio
na

lo
ve

rh
ea

d
of

th
e

al
go

rit
hm

[s]

d = 8,m = 1

GP fit
Acquisition
d = 8,m = 8

GP fit
Acquisition

Figure 4.8: Cumulative computational overhead in seconds against the number of training sam-
ples ntrain for d = 2, 8 (right). It is clear that the computational overhead per added
training sample decreases for increased m. This is because the batch acquisition algo-
rithm increases performance. Furthermore the computational overhead increases for
higher dimensions d but this is only a small effect. On the left side the computational
overhead is dissected into its main contributions, the acquisition step and the regres-
sion step for d = 8 and m = 1, 8. When using batch acquisition the computational
overhead decreases both for the acquisition step and the regression step.

needed to achieve convergence for the toy cases we can now proceed to make some
predictions of the performance of our algorithm compared to MCMC. We are particularly
interested in whether our algorithm can outperform MCMC in terms of speed (in wall
clock time). Therefore we need to take into consideration the time it takes to calculate
the posterior for a single sample (this will be assumed to be constant in the following), the
number of evaluations for both MCMC and our algorithm which are required to achieve
convergence as well as the computational overhead for our algorithm. We conservatively
neglect the computational overhead of MCMC.
The results of this are shown for four different exemplary combinations of m and d
in Fig. 4.9. From this comparison it is clear that our algorithm will always win in
terms of efficiency for slow likelihoods/posteriors since our algorithm only requires a
small fraction of the samples that MCMC requires to converge. This comes at the
cost of added computational overhead though which means that for fast likelihoods
(in our examples 10−4 − 10−3 evaluations per second) MCMC will converge faster. In
addition to this MCMC is more robust and does not make the strong assumptions on
smoothness that our algorithm makes. Furthermore it is important to keep in mind
that the exponential scaling of the computational overhead and required numbers of
samples with dimensionality effectively limit the number of dimensions this algorithm
can efficiently used in to d . 10 for most practical examples.

Real world data
Now that we have a robust understanding of how our algorithm scales with dimension-
ality and where its strengths and weaknesses lie it is time to try it on some real world
data. For this two examples which fit our criteria (approximate gaussianity and d < 10)
were chosen:

49

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

10−410−310−210−1 100 101 102 103 104 105

Total time until convergence [s]

10−1

100
101
102
103
104
105
106
107
108
109
1010

T
im

e
fo

r
ev

al
ua

tin
g

th
e

po
st

er
io

r
[s]

1 minute

1
m

in
ut

e

1 hour
1

ho
ur

1 day

1
da

y

1 month

d = 2, ncores = 1

GP
MCMC

10−410−310−210−1 100 101 102 103 104 105

Total time until convergence [s]

10−1

100
101
102
103
104
105
106
107
108
109
1010

T
im

e
fo

r
ev

al
ua

tin
g

th
e

po
st

er
io

r
[s]

1 minute

1
m

in
ut

e

1 hour

1
ho

ur

1 day

1
da

y

1 month

d = 2, ncores = 4

GP
MCMC

10−410−310−210−1 100 101 102 103 104 105

Total time until convergence [s]

10−1

100
101
102
103
104
105
106
107
108
109
1010

T
im

e
fo

r
ev

al
ua

tin
g

th
e

po
st

er
io

r
[s]

1 minute

1
m

in
ut

e

1 hour

1
ho

ur

1 day

1
da

y

1 month

d = 8, ncores = 1

GP
MCMC

10−410−310−210−1 100 101 102 103 104 105

Total time until convergence [s]

10−1

100
101
102
103
104
105
106
107
108
109
1010

T
im

e
fo

r
ev

al
ua

tin
g

th
e

po
st

er
io

r
[s]

1 minute
1

m
in

ut
e

1 hour

1
ho

ur

1 day

1
da

y

1 month

d = 8, ncores = 4

GP
MCMC

Figure 4.9: Comparison of the performance of our algorithm vs. MCMC in the toy setting for
different combinations of m and d and assuming different times for evaluating the
posterior distribution. One can see that our algorithm becomes more efficient than
MCMC if the posterior evaluation time passes a certain limit. The reason for this
is the small number of posterior samples required for our algorithm to converge. In
addition the benefit of using batch acquisition if multiple cores are available is visible.
This however moves the threshold after which our algorithm is faster than MCMC
towards higher posterior evaluation times.

50

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

• The two dimensional big bang nucleosynthesis (BBN) likelihood used in [43].
• The six dimensional Planck lite likelihood [44, 45] which is the 27 dimensional

Planck likelihood marginalized over the 21 dimensions which do not correspond to
cosmological observables. The theoretical predictions for the cosmological observ-
ables have been computed using the CLASS cosmological Boltzmann code [46].

We start by testing our algorithm on the Planck lite likelihood with uniform priors
which have been set to ∼ 3σ of the marginalized distribution which was obtained from
the official Planck chains [47]. We then ran our algorithm with m = 2 Kriging believer
steps, ζ = 1 and ninit = 10 initial points until a KL divergence of 0.01 was reached.
An MCMC chain was then run on the GP regressor and the resulting MCMC chain was
marginalized and plotted with GetDist [48]. This was compared to the official Planck
chains. The result is shown in Fig 4.10. In total the posterior was evaluated 94 times
with an average time of ≈ 5 s per posterior evaluation. The total computational over-
head of our algorithm was ≈ 45 s. This gives a total runtime of ≈ 280 s. If we assume
that the MCMC algorithm needs ∼ 104 evaluations to reach convergence this amounts
to a speed-up of O(102) which effectively allows the computation of this on a laptop
instead of a cluster.

Additionally the Planck likelihood can be used to test the influence of m, ζ and ninit
on the convergence. The KL divergence against the number of posterior evaluations if
either m, ζ or ninit is varied is shown in Fig. 4.11. One can see that increasing m leads
to an increase in posterior evaluations to achieve convergence which is consistent with
the results shown in Fig. 4.7.
Furthermore increasing N0 where ζ = exp(−N0/N) where N is the number of training
points for the GP leads to slower convergence although the KL divergence shows less
variability. Again this was to be expected due to the reasons given in section 4.3.
Changing the number of randomly drawn initial samples essentially has no impact on
convergence which underlines the fact that our algorithm can efficiently explore the
parameter space and find the maximum of the distribution. This also highlights the
numerical issues with using the KL divergence though as it is numerically not very
stable.
Next the algorithm was tested against the BBN likelihood with m = 2,ninit = 3 and
N0 = 0. The result of this is shown in Fig. 4.12. The posterior was evaluated 29 times
with a total computational overhead of≈ 9 s. The BBN likelihood is quite fast however as
a single posterior evaluation takes ≈ 10−4 seconds. This means that if we conservatively
assume that MCMC needs ∼ 103 evaluations for convergence our algorithm is O(102)
times slower than MCMC. This illustrates that the posterior evaluation time is the
crucial component when assessing whether using our algorithm is advantageous to using
MCMC.
The same BBN likelihood also lends itself to experimentation regarding the robustness
of the algorithm for non-gaussian likelihoods. We can get such likelihoods if we only
include the measurement of the primordial helium abundance YP by [49] or the primordial
deuterium abundance yDP = 105nD/nH instead of both. This gives an elongated, non-
gaussian shape in both cases which we can give to our algorithm. The result is shown
in Fig 4.13 with m = 2, ninit = 1 and ζ = 1 the KL divergence for terminating the

51

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

0.0222 0.0226

Ωbh
2

0.96

0.97

n
s

3.01

3.04

3.07

lo
g(

10
10
A

s)

0.04

0.06

τ r
ei

o

66

67

68

69

H
0

0.117

0.120

0.123

Ω
ch

2

0.118 0.122

Ωch
2

66 67 68 69

H0

0.04 0.06

τreio

3.04 3.07

log(1010As)

0.96 0.97

ns

Our algorithm
Official chains

Figure 4.10: Marginalized 2d 1σ and 2σ contours as well as marginalized 1d distributions of our
algorithm compared with the official Planck chains. The contours, correlations and
marginal distributions are well recovered by our algorithm which offers a computa-
tional speed-up of O(102) (in wall clock time) compared to MCMC.

52

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

10−2

105

1012

K
L

di
ve

rg
en

ce

m = 1

m = 2

m = 4

m = 6

10−1

106

1013

K
L

di
ve

rg
en

ce N0 = 0

N0 = 2

N0 = 5

N0 = 10

102

Number of training points

10−2

104

1010

K
L

di
ve

rg
en

ce ninit = 1

ninit = 5

ninit = 10

Figure 4.11: KL divergence against the number of training samples of the GP (posterior evalua-
tions) when varying m,N0 where ζ = exp(−N0/N) and ninit. Only one parameter
is varied for each plot while the other ones are kept atm = 2, N0 = 0 and ninit = 10.
One can see that increasing m and N0 causes the algorithm to converge slower al-
though increasing m allows for the parallel evaluation of the posterior and N0 > 0
stabilizes convergence. Changing ninit essentially has no impact.

0.022 0.024

Ωbh
2

−1

0

1

∆
N

e
ff

−1 0 1

∆Neff

Our algorithm

MCMC

Figure 4.12: Comparison of our algorithm with MCMC for the two-dimensional BBN likelihood
from [43]. Our algorithm correctly captures the 1 and 2 σ contours. It is however less
efficient than MCMC since the computational overhead dominates the evaluation
time.

53

4 BAYESIAN QUADRATURE FOR PROBABILITY DISTRIBUTIONS

0.02 0.03

Ωbh
2

−1.5

−1.0

−0.5

0.0

0.5

∆
N

e
ff

−1 0

∆Neff

Our algorithm

MCMC

0.02 0.03

Ωbh
2

−2

0

2

4

6

∆
N

e
ff

−2 0 2 4 6

∆Neff

Our algorithm

MCMC

Figure 4.13: The same BBN likelihood as in Fig 4.12 when only including the measurement of
the primordial helium abundance YP (left) or primordial deuterium abundance yDP
(right). Even though both posterior distributions are non-gaussian the 1 and 2 σ
contours are recovered correctly. The algorithm struggles to correctly recover the
1d marginal distributions though.

algorithm was set to 0.005.
When only including the measurement of YP convergence convergence was reached after
37 posterior evaluations, when only including yDP after 55 evaluations. Although the 2d
1σ and 2σ contours are recovered well the marginalized distributions do not match fully.
Nevertheless this shows that the algorithm is robust enough to deal with non gaussian
posterior shapes.
All tests shown here were done on an Intel Core i5-6300U CPU with 4× 2.4 GHZ clock
speed. The posterior of the BBN likelihood as well as the numerical integration of the
GP regressor has been performed with the MCMC algorithm that has been developed
for CosmoMC [17, 18]. The Cobaya package has been used for translating between our
algorithm and the MCMC sampler and between our algorithm and the Planck likelihood.
Figures 4.10, 4.12 and 4.13 were generated using GetDist [48]. Our algorithm which
has the preliminary name GPry uses the packages numpy [50], Scikit-learn [51] and
modified parts of scikit-optimize [52]. The GP hyperparameters and the Acquisition
function are optimized using the scipy [53] implementation of the Large-Scale Bound
Constrained Optimization algorithm (L-BFGS-B) [54, 55]. GPry will be released for
public use in the near future.

54

5 A HYBRID NESTED SAMPLING/GP APPROACH

5 A hybrid Nested Sampling/GP approach

This chapter will present the methodology used to develop an algorithm that uses a
combination of GPs and nested sampling to build a framework which can exploit the
advantages of both methods.

5.1 Taking advantage of speed hierarchies

As Bayesian inference requires the partial or full marginalization of the Likelihood func-
tion as explained in 2.1 this necessitates the accurate numerical modelling of the latter
such that the value of the integral convergences to the true value. This can be done with
Nested Sampling methods as explained in 2.2.
For simple (analytic) p the Likelihood function can be computed analytically too which
usually means that its calculation is not particularly computationally demanding. How-
ever for many examples in science this Likelihood can be quite tricky to compute and
may involve numerical methods like integration, n-body simulations or approximate
solvers for differential equations [56, 57]. This means that an evaluation for a single
set of parameters θ demands a lot of computational resources which raises the need for
more efficient algorithms than MCMC which discards many of the evaluations of the
Likelihood.
On the other hand Bayesian quadrature which is very efficient at sampling a parameter
space have been brought forward as possible solutions to this problem [2]. However this
method suffers heavily under the curse of dimensionality. This has three reasons:

1. With a higher dimensional parameter space one inevitably needs to get a higher
number of samples from the likelihood to achieve convergence as the hyper volume
of the parameter space increases exponentially. Furthermore the number of corners
also rises exponentially which means that the volume where the bulk of the mass is
concentrated decreases exponentially with respect to the hypervolume of the prior.

2. The computational complexity of fitting the hyperparameters of a GP with MAP
increases proportional to n3. This means that sequentially acquiring points with
active sampling increases the computational complexity to ∼ n4. It is therefore
in our interest to keep the number of samples in the GP as low as possible which
conflicts with the first point.

3. The acquisition function has as many dimensions as the parameter space which
needs to be sampled. Since this needs to be optimized that means that higher
dimensionality also requires higher dimensional global optimization which is gen-
erally harder to achieve than in lower dimensions. This problem is not quite as
significant as the last two ones as even if the global maximum is not reached dur-
ing the optimization of the acquisition function getting stuck in a local maximum
does not break or slow down the algorithm significantly. Furthermore with enough
tries and a good choice of acquisition function all global optima will be explored
eventually.
Nevertheless it is good to keep this issue in mind. This overall exponential scal-
ing of the number of evaluations as well as the computational overhead required to
reach convergence means that the GP is only useful for likelihoods which are below

55

5 A HYBRID NESTED SAMPLING/GP APPROACH

1 2 4 8 16 32 64 128
Number of dimensions, d

102

104

106

108

1010

1012

N
um

be
r

of
po

st
er

io
r

ev
al

ua
tio

ns GP
PolyChord
MCMC

Figure 5.1: Illustration of the approximate number of evaluations required for convergence
against the number of dimensions. We empirically assume that MCMC and
PolyChord scale polynomially ∝ d1.7 and ∝ d2.5 respectively and that BQ scales
exponentially ∝ exp(0.2d). It is clear that MCMC is preferable over BQ when
nGP > nMCMC which is at d ≈ 60. If one also takes into consideration the com-
putational overhead that BQ introduces however which also scales approximately
exponentially it is clear that BQ becomes prohibitively expensive for most cases if
d & 10

a certain number of dimensions which is illustrated in Fig. 5.1. Here we assumed
that the number of evaluations for the GP increases ∝ exp(0.2 ·d) while it increases
for MCMC and PolyChord polynomially with ∝ d1.7 and ∝ d2.5 respectively. One
can see that at d ≈ 60 BQ and MCMC need approximately the same number
of evaluations for convergence which makes MCMC the method of choice since it
does not require any additional computational overhead. Furthermore one has to
keep in mind that the computational overhead of BQ also approximately increases
exponentially which makes this prohibitively expensive for most likelihoods if the
number of points reaches O(103). This means that for most practical applications
BQ can only efficiently be applied if d . 10.

In addition to the aforementioned issues associated with MCMC and GP algorithms for
Bayesian inference, likelihoods in physics often have some common properties which can
be exploited in an algorithm:

1. In most cases one is only interested in performing Bayesian inference17 on a small
subset of parameters θp = (θp,1, θp,2, . . .)T ⊆ θ which we will henceforth call
physical parameters since they are usually associated with underlying physics in
contrast to the rest θn = (θn,1, θn,2, . . .)T = θ\θp which we will summarize under
the name of nuisance parameters. These are typically parameters which are asso-

17In this context Bayesian inference means that we want a full characterization of a parameter space
θ ⊆ θ such that we can obtain marginal quantities etc.

56

5 A HYBRID NESTED SAMPLING/GP APPROACH

ciated to the experiment like cuts, filters and instrument parameters. The number
of nuisance parameters often exceeds that of physical parameters.

2. Many likelihoods in physics have an inherent speed hierarchy meaning that chang-
ing some parameters requires more computation than changing others. As such
parameters can usually be grouped into a "slow" and a "fast" category where the
difference in time it takes for recomputing the likelihood when changing a slow
parameter can often exceed the time it takes when changing a fast parameter by
a factor of 103 or more.
Luckily for us this speed hierarchy very often translates to physical and nuisance
parameters where θp are slow and θn fast. The reason for this is that recalculating
the physical model often involves some heavy numerical computation of integrals
and non-linear effects while changing θn essentially just reweighs the likelihood
function.

An example of such a hierarchy is the likelihood of the Planck experiment which 27
parameters assuming ΛCDM. Only six of those are parameters which depend on the
underlying cosmology which require numerically solving the Boltzmann equation while
the 21 other parameters are instrument parameters and astrophysical effects which are
O(103) faster to compute.
Due to the reasons explained above it is clear that MCMC, nested sampling and Bayesian
quadrature each have their strengths and weaknesses: MCMC and nested sampling
scale better with dimensions but need a higher number of posterior evaluations in low
dimensions while Bayesian quadrature is very efficient in low dimensions but does not
scale very well. In addition the computational overhead of GP regression makes it
prohibitively expensive for d & 10. This naturally raises the question whether we can
exploit these characteristics by using nested sampling for nuisance parameters, which are
typically fast parameters and more numerous than the physical parameters and using
Bayesian quadrature for the slow, physical parameters.
It turns out that this is indeed possible when a number of criteria are met which will be
detailed in the following.

5.2 The method

Our goal in Bayesian inference is to solve the integral

I =
∫
L(D|θ)π(θ) dθ̃

where D is some data, L the likelihood and π the prior. θ̃ is any subset of θ. As
discussed above θ̃ usually includes all nuisance parameters θn and usually all physical
parameters apart from one or two to display the marginal distribution of each pair of
parameters graphically. This means that we can perform the integration in two steps by
noticing that

I =
∫∫

L(D|θ)π(θ) dθ̃p dθn (5.1)

57

5 A HYBRID NESTED SAMPLING/GP APPROACH

where θ̃p ⊆ θp. If the prior is separable (i.e. π(θ) = π(θp) · π(θn)), which is given in
most cases, we can simplify this integral further:

I =
∫∫

L(D|θ)π(θp) dθ̃pπ(θn) dθn (5.2)

The outer integral can be computed using nested sampling and the inner integral with
Bayesian quadrature. This way we can exploit the advantages of both methods. This
method is illustrated in two dimensions in Fig. 5.2.

Marginalize with nested sampling

θn

θ p

Sam
ple

w
ith

G
P

Figure 5.2: Graphical illustration of the principle of the hybrid GP/nested sampling method with
one physical and one nuisance parameter. The ellipse represents the one σ contour
of the posterior distribution. For every θp that is sampled by the active sampling
algorithm, the posterior distribution is marginalized along θn with nested sampling.

In particular we can fully utilize the algorithm that was developed in chapter 4 for per-
forming the bayesian quadrature part of this while the nested sampling can be performed
with PolyChord which conveniently also gives us an estimate for the variance of log(Z)
where Z is posterior distribution marginalized over the nuisance parameters:

Z =
∫
L(D|θ)π(θ) dθn (5.3)

This variance can naturally be accommodated in our algorithm since the GP regressor
can account for statistical noise. This means that the GP needs more training points
and thus more evaluations of the posterior distribution are needed for convergence. It
however does not generally limit the ability of our algorithm to correctly map the pos-
terior if the estimate for the statistical noise that we get for log(Z) is correct. One issue
which has to be addressed though is that subtracting the numerical noise in the acqui-
sition function assumes i.i.d. gaussian noise which means that incorporating different
noise levels at different locations in the parameter space is not supported. There are two
possibilities to work around this:

1. We could interpolate the noise levels between different regions in the parameter
space. This lets us correctly deal with the statistical noise in log(Z). A natural

58

5 A HYBRID NESTED SAMPLING/GP APPROACH

choice for an interpolator here would be a GP however this almost doubles the
amount of computational overhead of our algorithm. In addition to this the noise
level estimation also has some statistical noise attached to it which makes the
problem even harder. Therefore this is, while being the rigorous solution, not an
efficient one.

2. The noise level on log(Z) that PolyChord returns essentially only depends on the
number of live points (N in algorithm 1). If we keep this fixed for all evaluations
we will receive very similar estimates for this noise level and treat it like a constant
number by setting the constant variance σ2

n to the mean value of the variances18.
Pseudocode for this method is shown in algorithm 6. The integration of the nuisance
parameters θn with nested sampling (algorithm 1) is done every time the physical pa-
rameters thetap are changed when evaluating the posterior for a newly acquired sample.
Furthermore while the Kriging believer algorithm can be used in this case for batch ac-
quisition it generally parallelizes worse than PolyChord meaning that it is likely most
efficient to acquire a single point per step and use parallel computation for integrating
over the nuisance parameters.

Input: GP(0, k(θp,θ′p|ξ)) (GP regressor with kernel), ninit
(Number of initial samples), a(µ(θp),σ(θp)) (acquisition
function), P (θ) (log-posterior)

[1] Randomly draw ninit initial phys. samples θp,0
[2] log(Z0),σlog(Z0) :=

∫
P (θ) dθn alg. 1

[3] θp,train := θp,0
[4] ytrain := log(Z0)
[5] σ2

n := σ2
log(Z0)

[6] Σ2
n = diag(σ2

n) (crude) or diag(σ2
n,i)

[7] for N times do
[8] Fit ξ with θp,train, ytrain, Σ2

n alg. 2
[9] Acquire m points θp with Kriging believer alg. 5

[10] log(Z),σlog(Z) =
∫
P (θ) dθn alg. 1

[11] ytrain = {ytrain, log(Z)}
[12] σ2

n = {σ2
n,σ2

log(Z)}
[13] end
[14] return GP regressor

Algorithm 6: Pseudocode of the method presented in section 5.2.
The integration over the nuisance parameters θn is done using
PolyChord at every location θp in the physical parameter space,
that our algorithm proposes. While the Kriging believer can be used
for batch acquisition it generally parallelizes worse than PolyChord
which means that in practice it is usually best to not use batch ac-
quisition but rather parallelize the integration over θn.

18One could also argue that we should take the conservative approach and take the maximum of all noise
levels or something like the 95% quantile. This could easily be done but if σlog(Z0) is approximately
the same for all points this should only have a minor impact.

59

5 A HYBRID NESTED SAMPLING/GP APPROACH

Again we can use MCMC or any other convenient algorithm to perform the integration
in

5.3 Efficiency

One unfortunate drawback of this approach is that the nested sampling procedure needs
to be performed for every posterior evaluation of the GP algorithm. This means that
the total evaluation time for the algorithm is given by

ttot ' nGP · nNS · tfast + nGP · tslow + toverhead (5.4)

where nGP and nNS are the number of evaluations required for the GP algorithm or nested
sampling to converge respectively and tfast and tslow are the times it takes for evaluating
the posterior when only a fast parameter is changed or when slow parameters are changed
too. toverhead is the computational overhead that the GP algorithm introduces19. We
will be using PolyChord which is implemented in Cobaya to perform the nested sampling
marginalization for which we know the scaling of nNS with the number of dimensions
from Fig. 2.3 which can be empirically estimated to be nNS = 5000 · d2.5.
Additionally we can empirically estimate the number of evaluations that the MCMC
algorithm needs which is nMCMC = 1000 · 101.7. However the MCMC algorithm that we
use can also take advantage of a speed hierarchy by dragging the fast parameters [58].
This means that the slow parameters are not changed at every iteration. We account
for this effect by conservatively assuming that the speed-up that this method provides
scales proportionally to the ratio of the number fast dimensions dfast to the total number
of dimensions dslow + dfast:

nMCMC,fast = nMCMC ·
dfast

dslow + dfast
, nMCMC,slow = nMCMC ·

dslow
dslow + dfast

(5.5)

The statistical noise, that the estimation of Z with PolyChord introduces means that our
algorithm will need more evaluations to converge which we account for by conservatively
estimating that this doubles the total number of training points in the GP required for
convergence.
These estimates now allow us to evaluate the efficiency of our hybrid approach as a
function of tslow and the speed hierarchy tfast/tslow for different combinations of dfast and
dslow which is shown in Fig. 5.3. We are especially interested in cases where dslow . 10
since the exponential scaling of the number of evaluations and of the computational
overhead means that this is the maximum amount that is practical except for very slow
likelihoods as illustrated in Fig. 5.1.
Furthermore the number of nuisance parameters is often greater than the number of phys-
ical dimensions hence we will investigate how the algorithm behaves when we increase
the number of fast dimensions drastically. As visible in Fig. 5.3 there is a distinctive area
in where our algorithm is faster than MCMC. This depends mostly on the speed hier-
archy tfast/tslow with a less pronounced dependence on tslow. The former comes mostly
from the big difference in the number of evaluations required for MCMC to converge
19We will henceforth neglect the computational overhead that that the nested sampling algorithm in-

troduces.

60

5 A HYBRID NESTED SAMPLING/GP APPROACH

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
t f

as
t/
t s

lo
w

dslow = 4, dfast = 4

10−2

10−1

100

101

10−2

10−1

100

101

102

t o
ur

al
go

ri
th

m
/
t M

C
M

C

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t f
as

t/
t s

lo
w

dslow = 8, dfast = 4

10−2

10−1

100

101

102

10−2

10−1

100

101

102

t o
ur

al
go

ri
th

m
/
t M

C
M

C

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t f
as

t/
t s

lo
w

dslow = 8, dfast = 16

10−2

10−1

100

101

102

103

10−2

10−1

100

101

102

103

t o
ur

al
go

ri
th

m
/
t M

C
M

C

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t f
as

t/
t s

lo
w

dslow = 8, dfast = 32

10−2

10−1

100

101

102

103

10−2

10−1

100

101

102

103

t o
ur

al
go

ri
th

m
/
t M

C
M

C

Figure 5.3: Ratio of (wall clock) evaluation times for our algorithm and MCMC for different com-
binations of dslow and dfast assuming that the algorithm is not parallelized as function
of the slow evaluation time tslow and the speed hierarchy tfast/tslow. Increasing the
number of slow dimensions shifts the region where our algorithm is preferred over
MCMC towards higher values of tfast/tslow while increasing the number of fast di-
mensions pushes this region towards lower tfast/tslow. Increasing dslow a value which
is significantly higher than 10 is not feasible since the number of evaluations required
for convergence will drastically increase the computational overhead. We can however
observe that there clearly is a region where our algorithm can achieve much faster
convergence than MCMC.

versus the GP approach while the latter comes from the computational overhead that
our algorithm introduces.
The region where our algorithm is faster than MCMC does not change very much with
the number of slow dimensions dslow as visible in the first two plots of Fig. 5.3 how-
ever changing the number of fast dimensions has a large impact on the area where our
algorithm wins, the reason for which is because for large dfast the fist term in Eq. 5.4
dominates and nNS scales worse than nMCMC with the number of dimensions (∝ d2.5 vs
∝ d1.7).
This shows that there is a range where this hybrid approach can extend the range of
problems for which using GPry can be advantageous to using MCMC. Another problem
which is solved by this approach is that the fraction of the prior hypervolume that is
occupied by a non-infinite log-likelihood shrinks with e−d. This is a problem for the GP
algorithm which has been discussed in detail in section 4.7. PolyChord however can deal
with −∞ in the log-likelihood allowing us to keep the number of dimensions of the GP
low enough so that this is not an issue.

61

5 A HYBRID NESTED SAMPLING/GP APPROACH

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t f
as

t/
t s

lo
w

dslow = 4, dfast = 4, ncores = 2

10−2

10−1

100

101

10−2

10−1

100

101

102

t o
ur

al
go

ri
th

m
/
t M

C
M

C

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t f
as

t/
t s

lo
w

dslow = 4, dfast = 4, ncores = 4

10−2

10−1

100

101

10−2

10−1

100

101

102

t o
ur

al
go

ri
th

m
/
t M

C
M

C

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t f
as

t/
t s

lo
w

dslow = 4, dfast = 4, ncores = 8

10−2

10−1

100

101

10−2

10−1

100

101

t o
ur

al
go

ri
th

m
/
t M

C
M

C

10−3 10−2 10−1 100 101 102 103 104 105

tslow [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t f
as

t/
t s

lo
w

dslow = 4, dfast = 4, ncores = 16

10−2

10−1

100

101

10−2

10−1

100

101

t o
ur

al
go

ri
th

m
/
t M

C
M

C

Figure 5.4: Ratio of evaluation times for our algorithm and MCMC for dslow = dfast = 4 with
different numbers of parallel processes. Running more parallel processes shifts the
area where our algorithm is preferred to higher values of tslow/tfast but at the same
time the computational overhead of BQ, which does not decrease by parallelizing,
becomes more pronounced.

These test assume however, that there is only one single core available for computation
which does not take advantage of the very good parallel performance of PolyChord which
parallelizes almost perfectly (actually it parallelizes proportional to ncores − 1 because
one core stays idle when running PolyChord in parallel) while the parallel performance
of MCMC is much worse. This changes the equations in our favour.
An illustration of this effect is given in Fig. 5.4 for dslow = dfast = 4. Having more cores
also makes the MCMC chains converge in less iterations per core which does not happen
for the GP algorithm. This makes our algorithm less efficient than MCMC towards low
tslow however the better parallelization of PolyChord also pushes the equilibrium (100)
line towards higher values for tfast/tslow. This means that parallelization works in favour
of our algorithm if tslow is sufficiently high which is reflected in the plot.

5.4 Experiments

What is left to do for us is to actually try our approach on some posterior distribution.
For this we are using an artificial multivariate gaussian distribution with a randomly
drawn mean vector and covariance matrix in 8 dimensions of which we will treat 4 as
"nuisance dimensions" and marginalize over them (so in total we have dfast = dslow = 4).
The resulting 1σ and 2σ contours as well as the marginalized 1d distributions are shown

62

5 A HYBRID NESTED SAMPLING/GP APPROACH

2 4 6 8

x0

−5

0

5

x
3

−5

0

5

x
2

−5

0

5

x
1

−5 0 5

x1

−5 0 5

x2

−5 0 5

x3

Our algorithm
MCMC

Figure 5.5: 8 dimensional toy examples (dslow = dfast = 4) where 4 dimensions are marginalized
over with our algorithm and MCMC. Our algorithm correctly recovers the posterior
shapes and converges with only 35 evaluations in the slow parameter space as op-
posed to O(104) slow evaluations for MCMC. This comes at the expense of having
to evaluate the posterior at more locations in the fast dimensions which can be vi-
able if the evaluation in the fast dimensions is computationally much cheaper than
evaluations in the slow dimensions.

in in Fig. 5.5 where we compare the the results we would get when running an MCMC
chain on the same posterior distribution. The MCMC algorithm needed ≈ 6 · 104 eval-
uations of the posterior which amounts to ≈ 3 · 104 slow evaluations. In contrast our
algorithm needs a total of ≈ 106 posterior evaluations but only 35 slow evaluations with
an added computational overhead of ≈ 18 s. It is easy to see that if the slow evaluation
time is for example 10 s and the fast one 10−4 s our algorithm will be far superior to
MCMC since it converges in ∼ 500 s ≈ 10 min compared to MCMC which would need
∼ 6 · 105 s ≈ 1 week to converge.
In addition one can see in Fig. 5.5 that the posterior shape is correctly recovered even
though some of the mode is partly cut off by the prior bounds which shows that our
algorithm has no problem handling these kinds of posteriors. Additionally the number
of posterior evaluations in the slow dimensions seems to be consistent with our approx-
imation which assumed that the added statistical noise roughly doubles the required
number of posterior evaluations for convergence (see Fig. 4.7 for comparison).

63

5 A HYBRID NESTED SAMPLING/GP APPROACH

Issues

While the algorithm developed in this section shows some great potential for making BQ
a viable solution for performing Bayesian inference on a wide variety of different problems
there are some known caveats that need to be addressed before this algorithm can be
considered robust. These issues have to do with the posterior shape in the nuisance
dimensions. For this imagine being close to the priors in the physical dimension while
having a degeneracy between physical parameters and nuisance parameters.
In this scenario the posterior shape in the nuisance dimensions is pushed towards the
edge of the prior box and only a tiny proportion of the prior volume in the nuisance
dimensions is occupied by a non-vanishing posterior distribution. This effect is illustrated
in Fig. 5.6 where one can see that the posterior contour shifts in the nuisance dimensions
for different sampling locations in the physical dimensions. The effect in this example
is very mild so PolyChord can easily deal with this, however with a higher number
of nuisance dimensions and more pronounced degeneracies between the physical and
nuisance dimensions this becomes problematic.
The problem is even worse when the sample in the physical dimensions is located at
a point where the posterior in the nuisance dimensions vanishes everywhere. This is
equivalent to having a −∞ value in the log-posterior in the physical dimensions. Since
PolyChord is not designed to deal with such cases it gets stuck in an infinite loop.
Solving these problems should however be a manageable task and with this our algorithm
would be a robust and very efficient alternative to MCMC for a wide range of problems.

64

5 A HYBRID NESTED SAMPLING/GP APPROACH

−5 0 5

x4

−5

0

5

x
7

−5

0

5

x
6

−5

0

5

x
5

−5 0 5

x5

−5 0 5

x6

−5 0 5

x7

PolyChord 1
PolyChord 2

Figure 5.6: Illustration of how the posterior shape shifts in the nuisance dimensions for different
sampling locations in the physical dimensions. In high dimensions and with large
degeneracies between physical and nuisance parameters this can lead to the mode
moving such that it only occupies a small strip along the edge of the prior. This
makes it very hard for PolyChord to navigate such a space.

65

6 CONCLUSION & OUTLOOK

6 Conclusion & Outlook

In this thesis we developed a set of algorithms which can be used for performing Bayesian
inference by interpolating the posterior distribution with a GP regressor where we im-
proved on previous work in three ways.
First we derived an acquisition function for efficient sampling of the log-posterior dis-
tribution for Bayesian quadrature from a few basic assumptions. This was successfully
used in our algorithm and proved to provide good performance.
Second we introduces an improved version of the Kriging believer algorithm for batch
acquisition which saves computation time by using the blockwise matrix inversion for-
mula to update the inverse gram matrix instead of fully recomputing it. We showed that
this reduces the computational overhead per acquired point considerably and that it is
numerically robust. As such it can be used to parallelize the evaluation of the posterior
distribution.
Lastly we proposed a novel algorithm which takes advantage of the inherent speed hi-
erarchies of many likelihoods in physics by marginalizing over the posterior’s nuisance
parameters with nested sampling while using a GP to interpolate the remaining dimen-
sions. We show that this can extend the number of dimensions in which the GP can
efficiently operate by a considerable amount and that it can speed up overall computation
time.
We developed an algorithm that incorporates the first two of these improvements and
tested its performance when performing Bayesian inference on unimodal gaussian likeli-
hood toy models as well as two real likelihoods from cosmology. With the six dimensional
Planck Lite likelihood we report a decrease of O(102) in wall clock time for convergence
which effectively reduces the computation time required for characterizing the posterior
from O(hours) required on a cluster to O(minutes) on a laptop. We also tested our
model on some highly non-gaussian posterior shapes which it could recover correctly.
Next we tested an algorithm which incorporates all three of these novel ideas on gaussian
toy likelihoods as a proof of concept. We were able to successfully apply this algorithm
to gaussian toy likelihoods and were also able to assess for which posterior distributions
it is superior to MCMC in terms of convergence speed. Nevertheless there are some
issues with this approach that still need to be addressed in the future.
Despite these minor issues our proof of concept shows that this algorithm can outperform
MCMC by several orders of magnitude in terms of wall clock time for a wide range of
likelihoods which significantly reduces the time and computational power required to
infer parameters from these models. This will provide exciting opportunities for testing
theoretical models against data which have previously been out of reach due to the
computation time which would be required to perform Bayesian inference of these models
with classical approaches like MCMC.

67

6 CONCLUSION & OUTLOOK

Appendix

The Cholesky decomposition

Let A ∈ M be matrix. If and only if A is positive semidefinite it can be decomposed
into a product of a lower triangular matrix L ∈M with non-negative diagonal elements
and its conjugate transpose:

A = LL∗ (.1)

If A is positive definite L is unique [59].

The Cholesky decomposition can be used to solve linear equations of the form

Ax = b (.2)

To solve for x one first solves the system Lz = b by forward substitution and then
LTx = z by backward substitution [19]. This can be written as x = LT \(L\b)

In algorithm2 (K + σ2
nI)
−1y is needed to solve eq. (3.14) and (3.22) which can be done

by replacing A = (K + σ2
nI), x = (K + σ2

nI)
−1y and b = y:

(K + σ2
nI)
−1y = LT \(L\y) (.3)

The computational complexity for the Cholesky decomposition is O(n3) and for fore-
ward and backwards substitution O(n2). Furthermore this algorithm is numerically very
robust [19].

For the second expression appearing in eq. (3.14) one needs to compute

v := L−1K(x,x∗) = L\K(x,x∗) (.4)

since

vTv = K(x∗,x)(L−1)T (L−1)K(x,x∗) (.5)
= K(x∗,x)(K + σ2

nI)
−1K(x,x∗) (.6)

Lastly the determinant of A can be computed very easily if L is known:

|A| =
n∏
i=1

L2
ii (.7)

69

6 CONCLUSION & OUTLOOK

Derivation of the marginalized GP

The goal is to derive the marginal distribution for a GP:

log p(y|X) = −1
2y

T (K + σ2
nI)
−1y− 1

2 log |K + σ2
nI| −

n

2 log 2π

We start by taking the general expression for the marginal distribution

p(y|x) =
∫
p(y|f ,x)p(f |x) df

and inserting the expressions for the prior and posterior which are

p(f |x) = N (0,K) = (2π)−n/2|K|−1/2 exp
(
−fTK−1f

)
and

p(y|f ,x) = N (f ,σ2
nI) = (2π)−n/2|σ2

nI|−1/2 exp
(
−(y− f)T (σ2

nI)
−1(y− f)

)
.

Their product can then be calculated using [19]

N (x|a,A)N (x|b,B) = Z−1N (x|c,C) .

Since the second term integrates out to one we only need to know Z−1 which is

Z−1 = (2π)d/2|A+B|−1 exp
(
(a− b)T (A+B)−1(a− b)

)
.

and with a = 0, A = K, b = −y, B = σ2
nI we get

p(y|X) = (2π)d/2|K + σ2
nI|−1 exp

(
yT (K + σ2

nI)
−1y

)
.

By taking the logarithm we arrive at the desired result.

Proof that the Kriging believer algorithm conserves µGP

The idea is to prove that the expectation value of the GP does not change if we lie to
the model by pretending that y0(x1) = µ0(x1).
First start by predicting µ0(x1) for given training points x0 and inference points x1. The
formula for µ0(x1) (the prediction) is given by:

µ0(x1) = K(x1,x0)K(x0,x0)
−1y0

where K(x,x′) is the covariance matrix resulting from the covariance function k(x,x′).
The next step is to assume y0(x1) = µ0(x1) and then make a new prediction at a new

70

6 CONCLUSION & OUTLOOK

place x2. The mean at this point will be given by:

µ1(x2) = (K20,K21)

(
K00 K01
K10 K11

)1(
y0

µ0(x1)

)

= (K20,K21)

(
K00 K01
K10 K11

)−1(1
K10K

−1
00

)
y0

where K(xi,xj) := Kij . Now we can use the blockwise inversion lemma to get:

µ1(x2) = (K20,K21)

(
K−1

00 +K−1
00 K01SK10K

−1
00 −K−1

00 K01S

SK10K
−1
00 S

)(
1

K10K
−1
00

)
y0

= (K20,K21)K
−1
00 +K−1

00 K01SK10K
−1
00 −K

−1
00 K01SK10K

−1
00 K

−1
00 K01SK10K

−1
00 −K

−1
00 K01SK10K

−1
00 y0

= K20K
−1
00 y0

= µ0(x2)

where S = (K11 −K01K
−1
00 K10)−1. This proves that indeed if we lie to the model by

giving it its own mean we do not need change the hyperparameters of the GP. As such
we can use the matrix inversion lemma to include this point into the GP without having
to do the expensive recalculation of the full inverse.

71

REFERENCES

References
[1] Michael Osborne et al. “Active Learning of Model Evidence Using Bayesian Quadra-

ture”. In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et
al. Vol. 25. Curran Associates, Inc., 2012, pp. 46–54. url: https://proceedings.
neurips.cc/paper/2012/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.
pdf.

[2] Marcos Pellejero-Ibañez et al. “Cosmological parameter estimation via iterative
emulation of likelihoods”. In: Monthly Notices of the Royal Astronomical Society
499.4 (Oct. 2020), pp. 5257–5268. issn: 0035-8711. doi: 10.1093/mnras/staa3075.

[3] T. Gunter et al. “Sampling for Inference in Probabilistic Models with Fast Bayesian
Quadrature”. In: Advances in Neural Information Processing Systems 27. Curran
Associates, Inc., 2014, pp. 2789–2797. url: http://papers.nips.cc/paper/
5483 - sampling - for - inference - in - probabilistic - models - with - fast -
bayesian-quadrature.pdf.

[4] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. A Multi-points Cri-
terion for Deterministic Parallel Global Optimization based on Gaussian Processes.
Tech. rep. Mar. 2008. url: https://hal.archives-ouvertes.fr/hal-00260579.

[5] R. J. Barnes and A. G. Watson. “Efficient updating of kriging estimates and vari-
ances”. In: Mathematical Geology 24.1 (Jan. 1992), pp. 129–133. issn: 1573-8868.
doi: 10.1007/BF00890091.

[6] John Skilling. “Nested Sampling”. In: AIP Conference Proceedings 735.1 (2004),
pp. 395–405. doi: 10.1063/1.1835238.

[7] W. J. Handley, M. P. Hobson, and A. N. Lasenby. “polychord: nested sampling for
cosmology”. In: Monthly Notices of the Royal Astronomical Society: Letters 450.1
(Apr. 2015), pp. L61–L65. issn: 1745-3925. doi: 10.1093/mnrasl/slv047.

[8] Glen Cowan. Statistical Data Analysis. Oxford: Clarendon Press, 1998. isbn: 978-
0-198-50155-8.

[9] Kevin P. Murphy. Machine Learning - A Probabilistic Perspective. Cambridge:
MIT Press, 2012. isbn: 978-0-262-01802-9.

[10] Andrew Gelman et al. Bayesian Data Analysis. 3rd ed. Boca Raton, Fla: CRC
Press, 2013. isbn: 978-1-439-84095-5.

[11] N. Aghanim et al. “Planck 2018 results”. In: Astronomy & Astrophysics 641 (Sept.
2020), A5. issn: 1432-0746. doi: 10.1051/0004-6361/201936386.

[12] Radford Neal. “MCMC Using Hamiltonian Dynamics”. In: Handbook of Markov
Chain Monte Carlo. Ed. by Steve Brooks et al. CRC Press, 2011. Chap. 5, pp. 113–
162. isbn: 978-1-420-07942-5. doi: 10.1201/b10905.

[13] W. J. Handley, M. P. Hobson, and A. N. Lasenby. “polychord: next-generation
nested sampling”. In: Monthly Notices of the Royal Astronomical Society 453.4
(Sept. 2015), pp. 4385–4399. issn: 1365-2966. doi: 10.1093/mnras/stv1911.

[14] F. Feroz and M. P. Hobson. “Multimodal nested sampling: an efficient and robust
alternative to Markov Chain Monte Carlo methods for astronomical data analyses”.
In: Monthly Notices of the Royal Astronomical Society 384.2 (Jan. 2008), pp. 449–
463. issn: 1365-2966. doi: 10.1111/j.1365-2966.2007.12353.x.

73

https://proceedings.neurips.cc/paper/2012/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf
https://doi.org/10.1093/mnras/staa3075
http://papers.nips.cc/paper/5483-sampling-for-inference-in-probabilistic-models-with-fast-bayesian-quadrature.pdf
http://papers.nips.cc/paper/5483-sampling-for-inference-in-probabilistic-models-with-fast-bayesian-quadrature.pdf
http://papers.nips.cc/paper/5483-sampling-for-inference-in-probabilistic-models-with-fast-bayesian-quadrature.pdf
https://hal.archives-ouvertes.fr/hal-00260579
https://doi.org/10.1007/BF00890091
https://doi.org/10.1063/1.1835238
https://doi.org/10.1093/mnrasl/slv047
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.1201/b10905
https://doi.org/10.1093/mnras/stv1911
https://doi.org/10.1111/j.1365-2966.2007.12353.x

REFERENCES

[15] F. Feroz, M. P. Hobson, and M. Bridges. “MultiNest: an efficient and robust
Bayesian inference tool for cosmology and particle physics”. In: Monthly Notices of
the Royal Astronomical Society 398.4 (Oct. 2009), pp. 1601–1614. issn: 1365-2966.
doi: 10.1111/j.1365-2966.2009.14548.x.

[16] Farhan Feroz et al. “Importance Nested Sampling and the MultiNest Algorithm”.
In: The Open Journal of Astrophysics 2.1 (Nov. 2019). issn: 2565-6120. doi: 10.
21105/astro.1306.2144.

[17] Antony Lewis. “Efficient sampling of fast and slow cosmological parameters”. In:
Phys. Rev. D87.10 (2013), p. 103529. doi: 10.1103/PhysRevD.87.103529. arXiv:
1304.4473 [astro-ph.CO].

[18] Antony Lewis and Sarah Bridle. “Cosmological parameters from CMB and other
data: A Monte Carlo approach”. In: Phys. Rev. D66 (2002), p. 103511. doi: 10.
1103/PhysRevD.66.103511. arXiv: astro-ph/0205436 [astro-ph].

[19] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for
machine learning. eng. Adaptive computation and machine learning. Cambridge,
Mass. [u.a.]: MIT Press, 2006, XVIII, 248 S. isbn: 0-262-18253-X and 978-0-262-
18253-9.

[20] J. Lamperti. Stochastic Processes - A Survey of the Mathematical Theory. Berlin
Heidelberg: Springer Science & Business Media, 2012. isbn: 978-1-468-49358-0.

[21] Bernt Øksendal. Stochastic Differential Equations - An Introduction with Applica-
tions. Berlin Heidelberg: Springer Science & Business Media, 2010. isbn: 978-3-
642-14394-6.

[22] Noel A. C. Cressie. “Geostatistics”. In: Statistics for Spatial Data. John Wiley &
Sons, Ltd, 2015. Chap. 2, pp. 27–104. isbn: 978-1-119-11515-1. doi: 10.1002/
9781119115151.ch2.

[23] David Duvenaud. “Automatic Model Construction with Gaussian Processes”. PhD
thesis. Cambridge, 2014.

[24] Andrew Gordon Wilson and Ryan Prescott Adams. Gaussian Process Kernels for
Pattern Discovery and Extrapolation. 2013. arXiv: 1302.4245 [stat.ML].

[25] Christian Steinruecken et al. “The Automatic Statistician”. In: Automated Machine
Learning: Methods, Systems, Challenges. Ed. by Frank Hutter, Lars Kotthoff, and
Joaquin Vanschoren. Cham: Springer International Publishing, 2019, pp. 161–173.
isbn: 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-5_9.

[26] Tom Minka. Deriving Quadrature Rules from Gaussian Processes. Tech. rep. Cam-
bridge, UK: Microsoft Research, June 2000. url: https : / / www . microsoft .
com/en-us/rminka2000esearch/publication/deriving-quadrature-rules-
gaussian-processes/.

[27] Donald R. Jones. “A Taxonomy of Global Optimization Methods Based on Re-
sponse Surfaces”. In: Journal of Global Optimization 21.4 (Dec. 2001), pp. 345–
383. issn: 1573-2916. doi: 10.1023/A:1012771025575.

[28] Lehel Csató. “Gaussian processes:iterative sparse approximations”. Aston Univer-
sity, Mar. 2002. url: http://publications.aston.ac.uk/id/eprint/1327/.

74

https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.21105/astro.1306.2144
https://doi.org/10.21105/astro.1306.2144
https://doi.org/10.1103/PhysRevD.87.103529
https://arxiv.org/abs/1304.4473
https://doi.org/10.1103/PhysRevD.66.103511
https://doi.org/10.1103/PhysRevD.66.103511
https://arxiv.org/abs/astro-ph/0205436
https://doi.org/10.1002/9781119115151.ch2
https://doi.org/10.1002/9781119115151.ch2
https://arxiv.org/abs/1302.4245
https://doi.org/10.1007/978-3-030-05318-5_9
https://www.microsoft.com/en-us/rminka2000esearch/publication/deriving-quadrature-rules-gaussian-processes/
https://www.microsoft.com/en-us/rminka2000esearch/publication/deriving-quadrature-rules-gaussian-processes/
https://www.microsoft.com/en-us/rminka2000esearch/publication/deriving-quadrature-rules-gaussian-processes/
https://doi.org/10.1023/A:1012771025575
http://publications.aston.ac.uk/id/eprint/1327/

REFERENCES

[29] Alex J Smola and Peter L Bartlett. “Sparse greedy Gaussian process regression”.
In: Advances in neural information processing systems 14. 2001, pp. 619–625. isbn:
978-0-262-04208-6.

[30] Michalis Titsias. “Variational Learning of Inducing Variables in Sparse Gaussian
Processes”. In: Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics. Ed. by David van Dyk and Max Welling. Vol. 5. Pro-
ceedings of Machine Learning Research. Hilton Clearwater Beach Resort, Clear-
water Beach, Florida USA: PMLR, 16–18 Apr 2009, pp. 567–574. url: http:
//proceedings.mlr.press/v5/titsias09a.html.

[31] Dustin Tran, Rajesh Ranganath, and David M. Blei. The Variational Gaussian
Process. 2016. arXiv: 1511.06499 [stat.ML].

[32] Carl Edward Rasmussen and Zoubin Ghahramani. “Bayesian Monte Carlo”. In:
Proceedings of the 15th International Conference on Neural Information Processing
Systems. NIPS’02. Cambridge, MA, USA: MIT Press, 2002, pp. 505–512.

[33] A. O’Hagan. “Monte Carlo is Fundamentally Unsound”. In: Journal of the Royal
Statistical Society: Series D (The Statistician) 36.2-3 (1987), pp. 247–249. doi:
https://doi.org/10.2307/2348519.

[34] Morton Kupperman. “Probabilities of Hypotheses and Information-Statistics in
Sampling from Exponential-Class Populations”. In: Ann. Math. Statist. 29.2 (June
1958), pp. 571–575. doi: 10.1214/aoms/1177706633.

[35] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. “Optimal Whitening and
Decorrelation”. In: The American Statistician 72.4 (Jan. 2018), pp. 309–314. issn:
1537-2731. doi: 10.1080/00031305.2016.1277159.

[36] Thomas Desautels, Andreas Krause, and Joel W. Burdick. “Parallelizing Exploration-
Exploitation Tradeoffs in Gaussian Process Bandit Optimization”. In: Journal of
Machine Learning Research 15.119 (2014), pp. 4053–4103. url: http://jmlr.
org/papers/v15/desautels14a.html.

[37] Clément Chevalier and David Ginsbourger. “Fast Computation of the Multi-Points
Expected Improvement with Applications in Batch Selection”. In: Learning and
Intelligent Optimization. Ed. by Giuseppe Nicosia and Panos Pardalos. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 59–69. isbn: 978-3-642-44973-4.

[38] J. González et al. “Batch Bayesian Optimization via Local Penalization”. In: Pro-
ceedings of the 19th International Conference on Artificial Intelligence and Statis-
tics (AISTATS). Vol. 51. JMLRWorkshop and Conference Proceedings. May 2016,
pp. 648–657. url: http://jmlr.org/proceedings/papers/v51/gonzalez16a.
pdf.

[39] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. “Kriging Is Well-
Suited to Parallelize Optimization”. In: vol. 2. Jan. 2010, pp. 131–162. doi: 10.
1007/978-3-642-10701-6_6.

[40] Mark Gibbs and David J.C. MacKay. Efficient Implementation of Gaussian Pro-
cesses. Tech. rep. Cavendish Laboratory, Cambridge UK, 1997.

75

http://proceedings.mlr.press/v5/titsias09a.html
http://proceedings.mlr.press/v5/titsias09a.html
https://arxiv.org/abs/1511.06499
https://doi.org/https://doi.org/10.2307/2348519
https://doi.org/10.1214/aoms/1177706633
https://doi.org/10.1080/00031305.2016.1277159
http://jmlr.org/papers/v15/desautels14a.html
http://jmlr.org/papers/v15/desautels14a.html
http://jmlr.org/proceedings/papers/v51/gonzalez16a.pdf
http://jmlr.org/proceedings/papers/v51/gonzalez16a.pdf
https://doi.org/10.1007/978-3-642-10701-6_6
https://doi.org/10.1007/978-3-642-10701-6_6

REFERENCES

[41] Yanan Sui et al. “Stagewise Safe Bayesian Optimization with Gaussian Processes”.
In: Proceedings of the 35th International Conference on Machine Learning. Ed.
by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. Stockholmsmässan, Stockholm Sweden: PMLR, Oct. 2018, pp. 4781–
4789. url: http://proceedings.mlr.press/v80/sui18a.html.

[42] Felix Berkenkamp, Andreas Krause, and Angela P. Schoellig. “Bayesian Optimiza-
tion with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics”.
In: CoRR abs/1602.04450 (2016). arXiv: 1602.04450.

[43] Nils Schöneberg, Julien Lesgourgues, and Deanna C. Hooper. “The BAO+BBN
take on the Hubble tension”. In: Journal of Cosmology and Astroparticle Physics
2019.10 (Oct. 2019), pp. 029–029. issn: 1475-7516. doi: 10.1088/1475- 7516/
2019/10/029.

[44] N. Aghanim et al. “Planck 2018 results. V. CMB power spectra and likelihoods”.
In: (2019). arXiv: 1907.12875 [astro-ph.CO].

[45] N. Aghanim et al. “Planck 2018 results. VIII. Gravitational lensing”. In: (2018).
arXiv: 1807.06210 [astro-ph.CO].

[46] Diego Blas, Julien Lesgourgues, and Thomas Tram. “The Cosmic Linear Anisotropy
Solving System (CLASS) II: Approximation schemes”. In: JCAP 1107 (2011),
p. 034. doi: 10.1088/1475-7516/2011/07/034. arXiv: 1104.2933 [astro-ph.CO].

[47] Planck Collaboration et al. “Planck 2018 results - VI. Cosmological parameters”.
In:Astronomy & Astrophysics 641 (2020), A6. doi: 10.1051/0004-6361/201833910.

[48] Antony Lewis. “GetDist: a Python package for analysing Monte Carlo samples”.
In: (2019). arXiv: 1910.13970 [astro-ph.IM].

[49] Erik Aver, Keith A. Olive, and Evan D. Skillman. “The effects of He I λ10830
on helium abundance determinations”. In: Journal of Cosmology and Astroparticle
Physics 2015.07 (July 2015), pp. 011–011. issn: 1475-7516. doi: 10.1088/1475-
7516/2015/07/011.

[50] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[51] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12.85 (2011), pp. 2825–2830. url: http://jmlr.
org/papers/v12/pedregosa11a.html.

[52] Tim Head et al. scikit-optimize/scikit-optimize: v0.5.2. Version v0.5.2. Mar. 2018.
doi: 10.5281/zenodo.1207017.

[53] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

[54] Richard H. Byrd et al. “A Limited Memory Algorithm for Bound Constrained
Optimization”. In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–
1208. doi: 10.1137/0916069.

[55] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale
Bound-Constrained Optimization”. In: ACM Trans. Math. Softw. 23.4 (Dec. 1997),
pp. 550–560. issn: 0098-3500. doi: 10.1145/279232.279236.

76

http://proceedings.mlr.press/v80/sui18a.html
https://arxiv.org/abs/1602.04450
https://doi.org/10.1088/1475-7516/2019/10/029
https://doi.org/10.1088/1475-7516/2019/10/029
https://arxiv.org/abs/1907.12875
https://arxiv.org/abs/1807.06210
https://doi.org/10.1088/1475-7516/2011/07/034
https://arxiv.org/abs/1104.2933
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1910.13970
https://doi.org/10.1088/1475-7516/2015/07/011
https://doi.org/10.1088/1475-7516/2015/07/011
https://doi.org/10.1038/s41586-020-2649-2
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.5281/zenodo.1207017
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/0916069
https://doi.org/10.1145/279232.279236

REFERENCES

[56] Tim Sprenger et al. “Cosmology in the era of Euclid and the Square Kilometre
Array”. In: Journal of Cosmology and Astroparticle Physics 2019.02 (Feb. 2019),
pp. 047–047. issn: 1475-7516. doi: 10.1088/1475-7516/2019/02/047.

[57] Jan-Hendrik Prinz et al. “Markov models of molecular kinetics: Generation and
validation”. In: The Journal of Chemical Physics 134.17 (2011), p. 174105. doi:
10.1063/1.3565032.

[58] R. M. Neal. “Taking Bigger Metropolis Steps by Dragging Fast Variables”. In:
ArXiv Mathematics e-prints (Feb. 2005). eprint: math/0502099.

[59] Roger A. Horn and Charles R. Johnson. Matrix Analysis. 2nd ed. Cambridge:
Cambridge University Press, 2013. isbn: 978-1-139-78888-5.

77

https://doi.org/10.1088/1475-7516/2019/02/047
https://doi.org/10.1063/1.3565032
math/0502099

REFERENCES

Acknowledgements

First of all I would like to thank my main supervisor Jesús Torrado for countless hours
of answering questions, discussing, correcting and helping me at any day and any time.
It is hard to overstate the amount of dedication he has put towards this project and I am
very grateful for this. I would also like to thank my official supervisor Julien Lesgourgues
as well as my two other inofficial supervisors Nils Schöneberg and Christian Fidler for
being very patient, helpful and interested. We had many insightful and enlightening
discussions and this was a great year for me, both academically and personally.
I would also like to thank Felix Kahlhoefer for taking on the task of being my second
corrector.
Despite the special circumstances which have unfortunately severely limited the time I
could physically spend at the institute I want to thank the whole TTK for becoming
friends to me. It was a great time which I will look back to in joy and I will sincerely
miss you all. It has has been a great pleasure to share my office with my fellow master
students and I would like to thank them for a lot of good conversations, laughs and
advices. Last but not least I would like to thank my partner Anne who has helped me
throughout the last, very stressful weeks of this year with a lot of emotional support.

79

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

El Gammal, Jonas Elias 355338

Accelerating Bayesian Inference of expensive Likelihoods with Gaussian Processes

Aachen, den 16.12.2020

Aachen, den 16.12.2020

	Table of contents
	Introduction
	An introduction to Bayesian inference
	Bayesian inference
	Bayes theorem
	Bayes theorem for probability distributions
	Priors
	Numerical considerations

	Markov Chain Monte Carlo
	Markov Chains
	Markov Chain Monte Carlo

	Nested Sampling
	Typical computational complexity

	Gaussian Processes
	Concept
	Conditioning

	The kernel function
	Composite kernels
	Higher dimensionality
	Tuning the kernel's hyperparameters

	GP Regression
	Bayesian quadrature
	Active sampling

	Bayesian quadrature for probability distributions
	Why Bayesian quadrature?
	Power reduction operation
	Appropriate acquisition functions
	Preprocessing
	Parallelizing the algorithm
	Convergence criterion
	The problem with infinity
	Preserving bayesianity
	Experiments

	A hybrid Nested Sampling/GP approach
	Taking advantage of speed hierarchies
	The method
	Efficiency
	Experiments

	Conclusion & Outlook
	References

