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Abstract

This thesis presents novel contributions to the field of gravitational wave
data analysis, with a focus on the Laser Interferometer Space Antenna
(LISA) mission. The goal is to advance Bayesian inference methods with
the help of modern machine learning techniques and to develop efficient
frameworks for analyzing astrophysical and cosmological gravitational wave
signals in anticipation of the data expected from LISA.

The first part of the thesis develops a foundation in Bayesian statistics,
exploring both traditional and approximate inference techniques and es-
tablishing how machine learning can be used to accelerate the inference
process. A particular emphasis is placed on accelerating likelihood-based
inference through the use of Gaussian Processes and active learning. This
results in the GPry algorithm, a Gaussian Process-based posterior emula-
tor that significantly reduces the computational cost for inference in cases
where the posterior is expensive to compute. GPry is benchmarked against
state-of-the-art Monte Carlo samplers on both toy models and real-world
data from the Cosmic Microwave Background. Subsequent work extends
this method to LISA-specific inference tasks. Using GPry, parameter esti-
mation for three LISA source types–double white dwarfs, stellar-mass black
hole binaries, and supermassive black hole binaries–is performed. The re-
sults demonstrate a substantial acceleration in the inference process.

The final part of the thesis assesses how scalar-induced gravitational waves
arising from enhanced curvature perturbations during inflation can be con-
strained using LISA. A fast framework is developed for computing the
second-order gravitational wave signal using JAX, enabling efficient infer-
ence. Three approaches to modeling the curvature power spectrum are ex-
plored: a model-agnostic method using binned spectra, a template-based
method using phenomenological descriptions of the curvature power spec-
trum, and an ab initio approach for ultra-slow-roll inflation. This study
demonstrates that LISA can probe a wide range of inflationary scenarios
with high precision.

The findings of this thesis contribute to the understanding of gravitational
wave data analysis and establish novel methods for maximizing the scien-
tific output of LISA.
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Introduction

1 Introduction

This work covers the research that I have performed throughout the last
four years as part of my PhD studies at the University of Stavanger. This
research has covered several areas within machine learning accelerated in-
ference and was partially done with the aim of improving source modeling
and inference within the future LISA space mission. To tie the relatively
different topics together, the first three chapters comprise an introduction
of the methodology and state-of-the-art of the different areas of research.
After this, the four papers that have been produced during the PhD are
presented.

Chapter 2 covers the basics of Bayesian inference and machine learning
and how these two can be combined to accelerate the inference process.
As the GPry algorithm, which was developed as part of this work, is based
on Gaussian processes and active learning, these topics are introduced in
more detail.

Chapter 3 introduces the LISA mission with a particular focus on intro-
ducing the relevant quantities that are of interest for modeling the sources
that are projected to be observed by LISA and the difficulties arising when
inferring these quantities. Furthermore, this chapter gives a brief overview
of the current state-of-the-art in machine learning accelerated inference for
LISA.

Chapter 4 introduces a particular type of cosmological signal that might be
observed by LISA: scalar-induced gravitational waves. This chapter gives a
brief overview of the mechanism generating such a signal and the equations
that govern the evolution of scalar perturbations with a particular focus
on the single-field slow-roll inflationary model. Furthermore, the chapter
explains how gravitational waves are generated at second order from the
scalar perturbations and what contemporary bounds exist.

Paper I covers the GPry algorithm, which is a machine learning-accelerated
inference algorithm based on Gaussian processes and active learning. The
algorithm is tested on toy models and a real-world example of cosmic
microwave background data. The results show that the algorithm can sig-
nificantly accelerate the inference process compared to traditional meth-
ods.

Paper II builds on paper I by proposing an improved method for the active
learning part of the GPry algorithm by using a nested sampling approach
together with an efficient ranking of candidate samples to acquire batches
of training points in parallel.
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Introduction

Paper III uses GPry to infer the source parameters of three types of as-
trophysical sources projected to be observed by LISA: double white dwarf
systems, stellar mass black hole binaries, and supermassive black hole bi-
naries, achieving a speedup of up to two orders of magnitude in wall clock
time when compared to nested sampling.

Paper IV introduces a framework for inferring the source parameters of
scalar-induced gravitational waves through a fast computation of the second-
order gravitational wave signal with JAX. This allows for a fast computation
of the likelihood function that is used in the inference process. We fore-
cast the sensitivity of LISA to SIGWs using a) a model-agnostic approach
that involves binning the power spectrum of scalar perturbations Pζ , b) a
template-based approach using analytical, phenomenological descriptions
of Pζ , and c) an ab initio approach solving for the equations of motion
for a single-field ultra-slow roll inflationary model. The results show that
LISA will be able to detect SIGWs at high confidence levels for a wide
range of models.

A note regarding notation: In general, in this work we use bold font
notation for vectors and tensors, where x, y, z (lowercase letters) refer to
vectors and X,Y,Z (uppercase letters) are higher-order tensors. We use
this notation consistently; however, where quantities can be either scalars
or higher-dimensional objects and the generalization is trivial, we simplify
the notation by considering only the scalar case.

Whenever logarithms appear, if not specified otherwise by a subscript, they
refer to the natural logarithm with base e.

| . . . | refers to the absolute value for scalars, the Euclidean norm for vectors,
and to the determinant for matrices, except for the absolute value of a
determinant, which is denoted by |det(. . . )|.

When discussing concepts in General Relativity, Greek letters refer to in-
dices of the 4-dimensional spacetime. Latin letters indicate the 3-dimensional
space components.

2
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2 Bayesian inference with machine learn-
ing

This chapter covers the basis of Bayesian inference for parameter estima-
tion and explores how modern computational methods, including machine
learning, can accelerate this process. As modern Bayesian inference is
mainly a numerically driven field, the focus is on the computational as-
pects of it. This field has evolved considerably in recent years, specifically
due to the advent of machine learning techniques. Therefore, this section
is divided into four parts:

Section 2.1 covers the basics of Bayesian inference, introducing Bayes’ the-
orem, parameter inference, model selection, and touching on the role of
priors and potential pitfalls when performing Bayesian inference.

Section 2.2 explains the use of Monte Carlo methods in Bayesian inference
through what would nowadays be considered traditional methods. We
focus on two of the most commonly used and versatile methods: Markov
Chain Monte Carlo and Nested sampling.

Section 2.3 introduces the two most commonly used schemes for approxi-
mate Bayesian inference in physics: Variational inference and Simulation-
based inference.

Section 2.4 gives an overview of some of the machine learning techniques
that have been used in the past for Bayesian inference, focusing on some
of the most commonly used methods: Normalizing Flows, Gaussian Pro-
cesses, and Active Learning.

Lastly, Section 2.5 explains how machine learning techniques can be used in
different aspects of Bayesian inference and how they can be combined with
traditional and approximate inference methods to improve the efficiency,
robustness, and accuracy of the inference process.

2.1 Bayesian inference

This section provides a brief overview of the rationale behind Bayesian
inference, starting with Bayes’ theorem, introducing all relevant quantities–
namely the prior, likelihood, posterior, and evidence–and two measures of
similarity between probability distributions in the form of the Kullback-
Leibler and Jensen-Shannon divergence.
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2.1.1 Bayes’ theorem

At the core of Bayesian inference is Bayes’ theorem, which is a mathemat-
ical formula that describes how to update the probability of a hypothesis
A given new information (or data) B [5]

P (A|B) = P (B|A)P (A)
P (B) , (2.1)

where P (A|B) is the probability of A given B, P (B|A) is the probability
of B given A, P (A) is the prior probability of hypothesis A, and P (B)
is the marginal probability of the data B. In the context of parameter
estimation, A is the quantity of interest. Written in a more illustrative
form, Eq. (2.1) can be expressed as

P (hypothesis|data) = P (data|hypothesis)P (hypothesis)
P (data) . (2.2)

If our hypothesis is that the data is generated (up to some numerical noise)
by a model M with parameters θ, then we can shorten Bayes’ theorem to
the common form that we use throughout this work:

p(θ|D) = L(D|θ)π(θ)
Z(D) , (2.3)

where p(θ|D) is the posterior probability of the parameter(s) θ given the
data D, L(D|θ) is the likelihood of the data given the parameter(s) θ, π(θ)
is the prior probability of the parameter(s), and Z(D) is the evidence. If
multiple parameters govern the model M , θ becomes a vector.

In the transition from Eq. (2.2) to Eq. (2.3), we have transitioned from
the discrete parameter space of P to the continuous parameter space of
p, as parameters in most practical applications are modeled as continuous
variables. This in turn means that p, L, and π are probability density
functions (PDFs) as opposed to discrete probabilities, and Z is a normal-
ization constant that is frequently ignored in parameter estimation when
only relative probabilities are of interest.

2.1.2 Likelihood and log-likelihood

The likelihood L(D|θ) is a measure of how well the model with parame-
ter(s) θ explains the data D. It requires calculating the probability of the
data if coming from the evaluation of the model for a given set of param-
eters. Typically, this is done in two steps: First, the model is evaluated
for a given set of parameters, and then the likelihood is computed as a
measure of the agreement between the simulated data and the true data,
assuming some noise σ in the data.
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Hence, when either the model is computationally expensive to evaluate or
the comparison step between M(θ) and D is expensive (typically due to
the volume of data), the likelihood becomes the bottleneck of the inference
pipeline.

In the case of independent data points, the likelihood is simply defined
as the product of the likelihoods of each data point given the parame-
ter(s):

L(D|θ) =
N∏

i=1
L(Di|θ) . (2.4)

This makes it convenient to define the log-likelihood L as

L(D|θ) = logL(D|θ) =
N∑

i=1
logL(Di|θ) , (2.5)

where Di is the i-th data point, and N is the number of data points.

The exact prescription for computing L(Di|θ) depends on the problem at
hand and can range from simple analytical expressions to complex numer-
ical simulations. In either case, it involves the evaluation of the model
for a given set of parameters and the computation of some measure of the
agreement between the simulated data of the model and the true data,
assuming some noise σi in the data.

When the data is assumed to have independent Gaussian noise, the likeli-
hood for a single data point is given by

L(Di|θ) = 1√
2πσi

exp
(

−(Di −M(θ))2

2σ2
i

)
. (2.6)

2.1.3 Evidence and model selection

In practice, the evidence is a normalization constant that is often difficult
to compute. Using some elemental algebra on Bayes’ theorem, it is easy to
show that the evidence is equal to the marginal likelihood, i.e., the integral
of the likelihood over the prior density

Z(D) =
ˆ
L(D|θ)π(θ) dθ . (2.7)

The role of the evidence is important in model comparison. Comparing
two models M1 and M2 can be done using the Bayes factor, which is the
ratio of the evidence of two models:

B12 = Z(D|M1)
Z(D|M2) , (2.8)
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whereB12 is the Bayes factor betweenM1 andM2, Z(D|M1) is the evidence
of model M1, and Z(D|M2) is the evidence of model M2. Typically, the
Bayes factor is compared to Jeffreys’ scale [6] to quantify the strength of
evidence in favor of one model over another.

2.1.4 The role of priors

The computation of the likelihood L(D|θ), given a fixed theory and data,
is independent of the choice of the model (and its parameterization) that
is used to compute a prediction of the data. Conversely, the choice of
the prior π(θ) is subjective, as it represents the prior knowledge or beliefs
about the parameter before the data is observed. Even when attempting to
make the prior as uninformative as possible, it is impossible to avoid some
level of impact. It is, for example, already computationally impossible to
define a prior with infinite support, as its value (and hence the value of
the posterior density) vanishes.

Typical uninformative choices for priors are uniform distributions on the
parameters (if their order of magnitude is more or less determined) or
their logarithm (if it is not). Using such a parameterization, the posterior
density function becomes proportional to the likelihood. Additionally, the
prior can incorporate known physics, i.e., symmetries.

Another intuitive choice for the prior, commonly referred to as Jeffreys’
prior, is a prior that is invariant under reparameterization. This is achieved
by choosing a prior that is proportional to the square root of the Fisher
information matrix. This prior is often used in the context of model com-
parison.

Lastly, a useful relation that is easy to see is the one obtained by ex-
tending the Bayesian framework to include a second independent dataset
(P (D|D′) = P (D)). In this case, Bayes’ theorem states that

P (θ|D,D′) = P (D,D′|θ)P (θ)
P (D,D′) = P (D|D′, θ)P (D′|θ)P (θ)

P (D|D′)P (D′) , (2.9)

which can be rearranged into

P (θ|D,D′) = P (D|θ)
P (D) · P (D′|θ)P (θ)

P (D′) , (2.10)

where the posterior of D′ (the second term) becomes the prior for D. This
means that if there are known measurements of a parameter θ, and the new
information is independent of the old, the posterior from previous data can
be used as the prior for new data. In this way, one can build hierarchical
models.

6
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2.1.5 Parameter inference

As mentioned in Section 2.1.1, when trying to infer model parameters, one
typically neglects the evidence and focuses on the proportionality

p(θ|D) ∝ L(D|θ)π(θ) , (2.11)

or in terms of the log-probabilities

log p(θ|D) ∝ L(D|θ) + log π(θ) . (2.12)

For simple combinations of prior and likelihood distributions, the poste-
rior can be computed analytically, but in most real-world scenarios, the
posterior is a complex, multi-dimensional distribution that depends on the
data in a non-linear way. Inference in this case is equivalent to computing
a high-dimensional integral over the parameter space, which is a computa-
tionally expensive task. The following sections cover different methods to
perform Bayesian inference in a computationally efficient way.

2.1.6 Measures of similarity between probability distribu-
tions

As this work covers a variety of methods for Bayesian inference and fre-
quently compares them, it is important to be able to quantify the dissim-
ilarity between probability distributions. This is particularly important
when comparing the true posterior distribution to the approximations that
are used in the inference process. The measures that are used in this work
are the Kullback-Leibler (KL) divergence, Jeffreys’ divergence, and the
Jensen-Shannon (JS) divergence.

The KL divergence between two discrete probability distributions P and
Q is defined as [7]

DKL(P ||Q) =
∑

x∈X
P (x) log P (x)

Q(x) , (2.13)

where X is the sample space that P and Q are defined on. Likewise, for
continuous probability density functions (PDFs) p and q, the KL divergence
reads

DKL(p||q) =
ˆ
p(x) log p(x)

q(x)dx . (2.14)

It is important to note that the KL divergence is not symmetric, i.e.,
DKL(P ||Q) ̸= DKL(Q||P ), and it is 0 if and only if P = Q. There is no
upper limit to the KL divergence. A useful analytical formula is that of

7



Bayesian inference with machine learning

the KL divergence between two d-dimensional Gaussian distributions with
means µ1 and µ2 and covariances Σ1 and Σ2:

DKL(N (µ1,Σ1)||N (µ2,Σ2)) = 1
2

(
tr(Σ−1

2 Σ1)+

+(µ2 − µ1)T Σ−1
2 (µ2 − µ1) − d+ log |Σ2|

|Σ1|

)
. (2.15)

A symmetrized version of the KL divergence is Jeffreys’ divergence1 [6]:

Dsym
KL (P,Q) = 1

2 [DKL(P ||Q) +DKL(Q||P )] . (2.16)

The Jensen-Shannon (JS) divergence is a symmetric and bounded measure
of dissimilarity between probability distributions. It is defined as the av-
erage of the KL divergences between the two distributions P and Q and
their mixture distribution M ≡ 1

2(P +Q) [8]:

DJS(P,Q) = 1
2 [DKL(P ||M) +DKL(Q||M)] . (2.17)

The JS divergence is bounded by 0 ≤ DJS(P,Q) ≤ log(2) (using natural
logarithms).

A similar but approximate result to Eq. (2.15) can be derived for the JS
divergence between two Gaussian distributions. Assume two d-dimensional
Gaussian distributions with means µ1 and µ2 and covariances Σ1 and
Σ2. The mixture distribution is not a Gaussian. However, if the two
distributions are sufficiently close together, it can be approximated as a
Gaussian with mean µM = 1

2(µ1 +µ2) and covariance ΣM = 1
2(Σ1 +Σ2)+

1
4(µ1 − µ2) ⊗ (µ1 − µ2) ≈ 1

2(Σ1 + Σ2). The JS divergence between the
two distributions is then given by

DJS(N (µ1,Σ1),N (µ2,Σ2)) ≈ 1
4∆µT (Σ1 + Σ2)−1∆µ − d

2 log 2+

+ 1
2 log

(
|Σ1 + Σ2|√

|Σ1||Σ2|

)
, (2.18)

where ∆µ = µ1 − µ2.

As P and Q approach each other, the KL divergence, Jeffreys’ divergence,
and JS divergence all approach 0 and can be used interchangeably. Usually
a value < 0.01 for either can be considered to be a very good agreement
between the two probability distributions. Compared to the other two
divergences, the JS divergence is more numerically stable because the mix-
ture distribution covers the common support of P and Q, and since the JS

1There is a slight ambiguity regarding the factor of 1/2 in the definition of Jeffreys’
divergence as this factor is sometimes omitted. As we want to recover the original KL
divergence for symmetric distributions, we include the factor.
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divergence is bounded from above. This comes at the disadvantage of be-
ing harder to compute, however. Furthermore, in gradient descent methods
where the divergence is minimized, using the KL divergence over Jeffreys’
divergence can be advantageous, as it provides steeper gradients.

2.2 Bayesian inference with Monte Carlo methods

Monte Carlo (MC) methods, in their definition, comprise a broad class of
algorithms that rely on random sampling for numerical computation. In
the context of Bayesian inference, sampling the posterior distribution is
the objective.

In its most basic form, the philosophy of MC methods is that a numeri-
cally driven random approach can be more computationally efficient than
a deterministic algorithm. This is especially true in the context of high-
dimensional integrals, where the computational cost of a deterministic ap-
proach scales exponentially with the dimensionality of the problem.

Monte Carlo methods often work sequentially, where one or more previ-
ously drawn samples inform the next sample. This is in contrast to most
deterministic integration methods, where the samples are drawn according
to a fixed grid or a fixed rule.

This sequential procedure becomes particularly advantageous when the
posterior distribution (a) has a non-trivial surface such as multiple modes,
tight degeneracies, or very different scales in different directions, or (b)
when the posterior distribution is high-dimensional.

Furthermore, Monte Carlo methods tend to rely on simple rules for the
generation of samples, which makes them easy to implement and compu-
tationally efficient.

This section covers the use of MC methods in Bayesian inference, focusing
on two of the most commonly used methods: Markov Chain Monte Carlo
and Nested sampling.

2.2.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a class of algorithms that generate
a Markov chain of samples from the posterior distribution. A Markov
chain is defined as a sequence of samples θ1, θ2, . . . , θn where each sample
is drawn from a proposal distribution q(θ|θ′) that depends only on the
previous sample θ′. The exact form of the proposal distribution depends
on the specific MCMC algorithm used, and we explore some of them in
the following.

9
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The core idea behind MCMC is to tune this Markov chain in such a way
that the stationary distribution of the chain approaches a distribution that
is proportional to the posterior. In other words, the goal is to construct a
chain that follows a path in the parameter space such that the normalized
histogram of values approaches the posterior probability density function
(PDF) [9].

While the notation above assumes a one-dimensional parameter space, in
practice, the parameter space is typically high-dimensional, and the chain
is a sequence of vectors θ1,θ2, . . . ,θn. The generalization is trivial.

Although there are numerous implementations of MCMC, we present the
two most relevant ones: Metropolis-Hastings and Hamiltonian Monte Carlo.

Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm [10, 11] is a widely used MCMC
algorithm that stands out for its simplicity. One proposes θ′ from a simple
proposal distribution q(θ′|θ) and then accepts or rejects the new sample
based on an acceptance probability α(θ → θ′), given by

α(θ → θ′) = min
(

1, p(θ
′|D)

p(θ|D)
q(θ|θ′)
q(θ′|θ)

)
, (2.19)

where p(θ|D) is the posterior probability of the parameter. In practice,
this computation is performed in two steps by first drawing a candidate
sample θ′ from the proposal distribution q(θ′|θ) and then drawing a random
number u from a uniform distribution over [0, 1). If u < α(θ → θ′) the
candidate sample is accepted; otherwise it is rejected, and the chain stays
in the previous location θ.

Typically (and to satisfy the detailed balance condition), the proposal dis-
tribution is symmetric, i.e., q(θ′|θ) = q(θ|θ′), which simplifies the accep-
tance probability to

α(θ → θ′) = min
(

1, p(θ
′|D)

p(θ|D)

)
. (2.20)

This formulation ensures that the chain always jumps towards higher val-
ues of p. The probability to jump to locations where p(θ′|D) is lower than
p(θ|D) is proportional to the ratio of the posterior probabilities. Further-
more, note that q can only depend on the current value of the chain θ to
conserve the Markov property.

MH-MCMC stands out for its simplicity and ease of implementation, but
choosing an appropriate proposal distribution can be challenging and typi-
cally requires some fine-tuning. Especially when the posterior distribution

10
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is multimodal, choosing a small step size makes it unlikely that the chain
crosses the “valleys” between the modes. Conversely, a large step size can
lead to a low acceptance rate and slow convergence.

Furthermore, in a true Monte Carlo chain, the samples should be inde-
pendent, i.e., statistically uncorrelated. However, the next sample in the
chain always depends on the previous one, which means that this require-
ment is not satisfied. In the limit of an infinitely long chain, we would
eventually reach independence, but in practice, one typically assumes the
samples to be approximately independent after a number of steps of the
MCMC.

Lastly, there is the issue of burn in. If the chain starts in a random location,
it typically requires some iterations to “climb” the mode and to converge to
the stationary distribution. This necessitates discarding the first samples
(usually around 20 − 30% of the chain).

Techniques such as simulated tempering [12] try to alleviate the problem
of underexploring the posterior by introducing a temperature parameter
that slowly decreases as a function of the number of steps taken.

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo2 (HMC), is a variant of the Metropolis-Hastings
algorithm that uses physics-inspired dynamics to propose new samples.
The core idea behind HMC is to use the gradient of the log-posterior
to propose new samples, which allows for more efficient exploration of
the parameter space. The dynamics of the system are described by the
Hamiltonian [13]

H(θ,p) = − log p(θ|D) + 1
2pT M−1p , (2.21)

where p (not to be confused with the posterior probability p) is the mo-
mentum and M is the mass matrix. The mass matrix is a positive definite,
symmetric matrix that is usually chosen to be the identity matrix. The
notation implies a multi-dimensional parameter space; however, the same
principles apply to a one-dimensional parameter space. The negative log-
posterior acts as a potential well, counteracted by the kinetic energy of the
system (the quadratic term). As in classical mechanics, the energy of the
system is conserved, and the dynamics of the system are described by the
usual equations of motion:

dθ

dt = ∂H

∂p and dp
dt = −∂H

∂θ
, (2.22)

2In the literature, the naming of this algorithm is not consistent; it is also commonly
referred to as Hybrid Monte Carlo
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which can be solved numerically for each component using, e.g., a leapfrog
integrator. A new sample is obtained by setting a momentum and solving
the equations of motion to obtain a new sample θ′. The choice of both
the momentum and the step size in the leapfrog integrator depend on the
specific algorithm (see e.g., [14, 15, 16, 17]).

The acceptance probability is then given by

α(θ → θ′) = min
(

1, exp(H(θ,p))
exp(H(θ′,p′))

)
, (2.23)

where p′ is the new momentum. HMC is particularly useful in high-
dimensional problems where the posterior distribution is complex and mul-
timodal, as it allows for more efficient exploration of the parameter space.
However, it requires computing the gradient of the log-posterior, which can
be computationally expensive or infeasible if not analytical.

2.2.2 Nested sampling

Nested sampling is an alternative to MCMC that produces an estimate
of the evidence along with a Monte Carlo sample from the distribution.
Introduced in [18], it estimates the evidence from Eq. (2.7) (dropping the
explicit dependence on the data)

Z =
ˆ
L(θ)π(θ)dθ . (2.24)

The nested sampling algorithm transforms this integral by defining

X(λ) =
ˆ

L(θ)>λ

π(θ)dθ , (2.25)

where X decreases from 1 to 0 as λ increases. By defining L(X) as the
inverse function, the evidence becomes

Z =
ˆ 1

0
L(X)dX . (2.26)

This transformation simplifies the integral, but inverting L is non-trivial.
Instead, the integral is approximated using a weighted sum

m∑

i=1
wiLi → Z , (2.27)

where wi = ∆X is the distance between Xi and Xi+1.

To sample efficiently, a variable t is introduced such that

X1 = t1, X2 = t1t2, . . . , Xi = t1t2 . . . ti, . . . Xm = t1t2 . . . tm , (2.28)

12
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where each ti is drawn from a uniform distribution over [0, 1). The expec-
tation value and variance of log(t) are

E(log(t)) = −1/N , var(log(t)) = 1
N2 , (2.29)

where N is the number of samples. In practice, the algorithm begins with
a pool of samples called live points and iteratively selects the worst point
(lowest L) and replaces it with a new point drawn from the prior with
L > Li. The discarded points, called dead points, are retained. This
process continues until the desired precision is reached.

The uncertainty in Z can be estimated from the distribution of ti val-
ues:

p(t)dt =
∏

i

NtN−1
i , (2.30)

which defines a probability distribution for Z

P (Z) =
ˆ
δ

(
Z −

m∑

i−1
Liwi(t)

)
p(t)dt . (2.31)

The moments of this distribution can be determined using integration algo-
rithms, and the evidence is typically calculated in log space for numerical
convenience.

Additionally, the distribution of dead points, weighted by the likelihood,
provides a Monte Carlo estimate of the posterior distribution.

2.3 Approximate inference

While “traditional” Bayesian inference methods such as MCMC and Nested
sampling are powerful algorithms for estimation and model selection, they
can (a) be computationally expensive and slow to converge, requiring many
samples to accurately estimate the posterior distribution, and (b) require
the likelihood to be known, which is not always possible or feasible.

This has led to the development of inference methods designed to approxi-
mate the posterior distribution efficiently and effectively. This section cov-
ers two of the most relevant methods for approximate inference in physics,
which address the two problems stated above: Variational inference and
Simulation-based inference.

2.3.1 Variational inference

Variational inference (VI) is a class of methods that approximate intractable
posterior distributions by recasting the posterior estimation into an op-
timization problem. Instead of sampling p(θ|d) directly, VI posits one
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or multiple trial densities qλ(θ), also called variational distribution (with
learnable parameters λ) to approximate the true posterior [19].

This trial density, which is easier to evaluate than p(θ|d), is tuned to be a lo-
cally optimal approximation to the true posterior. This typically yields an
analytically computable marginal posterior, thus eliminating the need for
sampling, although not all variational models rely on this property.

In practice, VI is performed by defining a measure of dissimilarity (or
divergence) between the proposal qλ(θ) and the target p(θ|d) and then
optimizing λ to minimize this divergence. A common and natural choice is
the KL divergence DKL(qλ||p) as defined in Eq. (2.14). Note the order of
the arguments in the divergence (qλ(θ) is the proposal, p(D|θ) the target),
which is “backwards”, and thus in regions where qλ(θ) has no support, the
contribution to the KL divergence is small. This encourages better fitting
towards the top of the mode at the risk of underestimating the tails of the
posterior.

Building on the KL divergence as a measure of dissimilarity, one arrives
at the evidence lower bound (ELBO) objective [20]. The ELBO can be
derived from Eq. (2.7) by taking the logarithm and recasting the integral
to be the expectation with respect to qλ(θ):

logZ(D) = log
ˆ
L(D|θ)π(θ)dθ = log

ˆ
qλ(θ)L(D|θ)π(θ)

qλ(θ) dθ. (2.32)

Jensen’s inequality [21] states that for any convex function f , E[f(x)] ≥
f(E[x]). Applying this to the logarithm, one finds

logZ(D) ≥
ˆ
qλ(θ) log L(D|θ)π(θ)

qλ(θ) dθ . (2.33)

This can be recast into the ELBO:

ELBO(λ) = Eqλ(θ)[L(D|θ)] − DKL(qλ(θ) || π(θ)) . (2.34)

where L is the log-likelihood. We can examine the two terms separately:
The first term is the expected log-likelihood of the data under the varia-
tional distribution (“fit” term), while the second term penalizes deviation
from the prior (“complexity” term). The ELBO naturally acts as a lower
bound as the KL divergence is non-negative. Maximizing the ELBO is
therefore equivalent to minimizing the KL divergence between the vari-
ational distribution and the true posterior, hence leading to a qλ that
approximates the posterior as closely as possible. Typically, the ELBO
is minimized using standard optimization techniques such as stochastic
gradient descent. In principle, the variational distribution can be any dis-
tribution, such as a Gaussian or a mixture of Gaussians. However, in
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modern VI implementations, Neural Networks (NNs) have seen increas-
ing use, enabling highly flexible approximations. Popular choices include
Normalizing Flows [22, 23], Variational Autoencoders [24], and Gaussian
Processes [25].

2.3.2 Simulation-based inference

Simulation-based inference (SBI), also known as likelihood-free inference
(see e.g., [26] for a review), refers to Bayesian inference methods that rely
on a simulator (generative model) rather than an explicit likelihood func-
tion. In Bayesian terms, the goal is to obtain the posterior p(θ|D) without
having to explicitly compute the likelihood L(D|θ). Instead, we can gener-
ate synthetic data D ∼ p(D|θ) via a simulator. Bayes’ theorem still holds
in this approach, but the evaluation of the likelihood is bypassed by using
forward simulations and comparisons to the observed data to approximate
the posterior. Effectively, one replaces the likelihood computation with
repeated simulation experiments.

SBI is particularly useful for complex models with intractable or compu-
tationally expensive likelihoods. This scenario arises in many fields where
simulating the process (forward model) is achievable, but writing down
L(D|θ) in closed form poses a challenge. SBI addresses this by using the
simulator as a black-box generative model: One generates many (θ,D)
pairs from the prior and simulator and uses these to infer the relationship
between the data and parameters. The posterior is thus “learned” from
simulations rather than computed from an analytic formula. In its simplest
form, the idea of SBI is to sample θ ∼ π(θ), simulate D ∼ p(D|θ), and
accept those θ whose simulated data D closely match Dobs. This procedure
yields the basic Approximate Bayesian Computation algorithm (discussed
below). As the matching criterion tightens (likelihood approximation im-
proves), the accepted θ’s approximate draws from the true posterior. In
its more complex form, SBI leverages machine learning methods such as
NNs to learn the relationship between θ and D and to approximate the
posterior more efficiently. This can involve learning a mapping from θ to
a compressed representation of D (summary statistics) or directly from
θ to D. SBI has seen huge developments in the last few years (see [26]
for a review) with a plethora of algorithms. A select number of them is
introduced in the following.

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is the prototypical SBI ap-
proach. Pioneered in [27], it generates simulations from the model and
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uses an acceptance criterion to approximate the posterior. The basic ABC
rejection sampling algorithm requires only three ingredients: the simula-
tor that generates data D ∼ p(D|θ), a prior π(θ), and a distance metric
ρ(D,Dobs) that quantifies the discrepancy between simulated and observed
data. In its simplest form, this distance metric can be the Euclidean dis-
tance between the simulated and observed data. The algorithm then in-
volves the following steps:

1. Sampling θi from the prior π(θ).

2. Simulating a data set Di ∼ p(D|θi) using the simulator.

3. Comparing Di to the observed data Dobs using the distance measure
ρ(Di, Dobs).

4. Accept θi if ρ(Di, Dobs) ≤ ϵ, where ϵ ≥ 0 (ϵ > 0 in continuous spaces)
is a tolerance threshold. Otherwise, reject θi.

The distribution of accepted θ-values approximates the desired posterior
p(θ|Dobs) (exactly so as ϵ → 0 for a sensible choice of ρ). Crucially, this
procedure requires no evaluation of p(D|θ) and only uses simulated out-
comes to decide acceptance. In practice, the value of ϵ must balance ac-
curacy and computational cost: smaller values of ϵ yield more accurate
posteriors but lower acceptance rates, while larger ϵ values lead to higher
acceptance rates at the cost of less accurate posteriors. ABC yields an
approximate posterior that is broader than the true posterior due to the
non-zero tolerance.

One major and hard-to-control drawback is the difficulty in predicting the
convergence speed of the ABC posterior to the true posterior as ϵ → 0.
The choice of distance metric certainly plays a role, but it is not always
trivial to find a good distance metric in the first place. Additionally, there
is no way of determining whether the tail mass in the posterior is due to the
choice of the distance metric or ϵ, or whether it comes from the posterior
itself. Additionally, disentangling errors introduced by the approximation
from those introduced through model misspecification remains challeng-
ing [28].

ABC suffers from the curse of dimensionality: as the dimensionality of
θ increases, the ratio of accepted to rejected simulations decreases ex-
ponentially. There are several avenues towards improving ABC, among
which are the use of Sufficient Summary Statistics, ABC-MCMC, and
ABC-Sequential Monte Carlo (ABC-SMC).

Sufficient Summary Statistics S(D) compress the data into lower-dimen-
sional representations. One matches these lower-dimensional summaries
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S(Di) ≈ S(Dobs) that capture most of the information. This does not
improve upon the problem of low acceptance rate but instead reduces the
computational cost of calculating the distance metric. Furthermore, if the
simulation is already performed in the compressed space, this speeds up the
simulation process too. The choice of good summaries (ideally sufficient
for θ) is critical, as poor summaries can bias the posterior [26].

ABC-MCMC (see e.g., [29]) combines ABC with a Metropolis-Hastings
algorithm to achieve a higher acceptance rate of samples. Proposals θ′ are
drawn via an MH-MCMC chain, and an acceptance probability is defined
analogously to Eqs. (2.19) and (2.20) that includes the ABC condition
(simulating D′ and accepting the step if ρ(D′, Dobs) < ϵ). By proposing
θ′ from a distribution that is more likely to yield accepted samples (i.e.,
mostly proposing samples nearby), the acceptance rate can be increased.
The downside is that this method inherits the usual MCMC issues of corre-
lation within the chain and fine-tuning of the proposal distribution.

ABC-SMC [30, 31] extends ABC-MCMC by constructing a sequence of
intermediate distributions that gradually transition from the prior to the
posterior, tightening the tolerance ϵ in steps. Starting with a loose toler-
ance, one obtains a pool of accepted θ “particles”. The tolerance is then
lowered, and the particle set evolved. Every particle is moved via some rule
(usually MCMC) and reweighted, or resampled, to fit the new tolerance
criterion. Over several iterations, the particles iteratively approach the
posterior from the prior, automatically adjusting tolerance levels. ABC-
SMC methods greatly improve efficiency in each step due to their gradual
approach and do not require the user to hand-select ϵ beforehand as the
algorithm can schedule it adaptively. However, the problem of judging the
goodness of the approximation remains.

2.4 Machine-learning methods

The algorithms presented in Sections 2.2 and 2.3 have seen widespread
adaptation in physics and Bayesian inference more broadly. However, they
are not without their limitations: Both MCMC and Nested sampling can
be slow to converge in high-dimensional problems. This is especially true
if the likelihood has a complex shape3 or if the posterior distribution is
multimodal. VI and SBI can approximate the posterior distribution effi-
ciently, but they are sensitive to the choice of the variational distribution

3In the context of likelihoods, complex shape refers to features in the likelihood
surface that samplers struggle to map. These typically comprise tight degeneracies
between parameters or deviations from multivariate Gaussians (“bananas”). In some
cases, these can be mitigated by finding a suitable invertible transformation into a
different parameter space, which is sampled instead.
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or distance metric. Furthermore, they tend to suffer from the same issues
as MCMC and Nested sampling in high-dimensional problems.

At the same time, the precision of modern experiments in some fields has
outpaced increases in computational power, which has led to a situation
where the likelihoods are becoming ever more computationally expensive
to evaluate. In turn, physics faces a trade-off between the precision of the
likelihood, the computational cost of evaluating it, and the human hours
required to optimize the inference pipeline. This has made some inference
problems prohibitively expensive.

Machine learning has rapidly developed in recent decades, driven by in-
creased computational power and advances in the development of NNs.
Training these NNs is often a Bayesian inference problem in itself. This
has naturally led to the development of machine learning methods that can
outcompete these classic algorithms in a set of scenarios. In this section,
we cover three of the most commonly used machine learning techniques for
Bayesian inference and relate them to the methods covered above.

It is important to note that many of these concepts borrow from one an-
other and are used in combination with the aforementioned methods (such
as e.g., Variational inference with Gaussian Processes, Nested sampling
with Normalizing Flows) as explained in Section 2.5.

The use of these methods, specifically in the field of gravitational wave
astronomy and LISA inference, is discussed in the next chapter.

2.4.1 Neural networks

Neural networks (see e.g., [32, 33] for reviews) are a class of machine learn-
ing algorithms that are broadly inspired by the structure of the human
brain. They consist of layers of interconnected nodes (neurons). Each
node receives input from the previous layer, applies a (nonlinear) transfor-
mation to the sum of its inputs through an activation function, and passes
the output to the next layer. The complexity of the network is determined
by the number of layers and the number of nodes in each layer. The first
and last layers are called the input layer and output layer, respectively, and
the layers in between are called hidden layers. Mathematically, the network
is represented through a series of matrix multiplications and element-wise
operations. The output of each layer is given by:

a(l) = σ(W(l)a(l−1) + b(l)) , (2.35)

where a(l) is the output of layer l, W(l) is the weight matrix, b(l) is the
bias vector, and σ is the activation function. The weights W(l)

ij and biases
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b(l)
i are learned from the training data. This is done by minimizing a

distance (loss function in machine learning terms), which quantifies the
difference between the predicted output and the true output. Typically,
an optimization algorithm is used to adjust the weights and biases of the
network.

Normalizing Flows

One type of NN particularly suited for applications in Bayesian inference
is the Normalizing Flow (see e.g., [34] for a review). Normalizing Flows
are a class of generative models that learn a mapping from a simple initial
probability distribution p(0)(θ(0)) (e.g., a Gaussian) to a more complex
target distribution p(T )(θ(T )) (e.g., the likelihood or posterior distribution).
This mapping is achieved through a series of invertible transformations.
For i = 1, 2, . . . , T , the transformations are given by

θi = f (i)(θ(i−1)), (2.36)

where the functions fi are invertible and differentiable. The change-of-
variable formula states that

p(i)(θ(i)) = p(i−1)(θ(i−1))
∣∣∣∣∣det

(
d(f (i)(θ(i−1)))−1

dθ(i−1)

)∣∣∣∣∣ , (2.37)

where the determinant term
∣∣∣det

(
d(f (i)(θ(i−1)))−1/ dθ(i−1)

)∣∣∣ is the Jaco-
bian of the transformation. The transformations can be applied sequen-
tially to map the initial distribution to the target distribution

p(T )(θ(T )) = p(0)(θ(0))
T∏

i=1

∣∣∣∣∣det
(

d(f (i)(θ(i−1)))−1

dθ(i−1)

)∣∣∣∣∣ . (2.38)

Using the identity det(A−1) = det(A)−1 and taking the logarithm of
Eq. (2.38), one arrives at the easier-to-compute formula

log p(T )(θ(T )) = log p(0)(θ(0)) −
T∑

i=1
log
∣∣∣∣∣det

(
df (i)(θ(i−1))

dθ(i−1)

)∣∣∣∣∣ . (2.39)

The mappings f (i) can take various forms, ranging from simple linear trans-
formations such as f (i)(θ(i−1)) = W(i)θ(i−1) + b(i), to more complex trans-
formations. These complex transformations often involve differentiable
NNs. A comprehensive exploration of all possible transformations is be-
yond the scope of this work, but the interested reader is referred to [34]
for a detailed review.
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2.4.2 Gaussian Processes

Gaussian Processes (GPs) have become a widely used tool for regression
and classification tasks over the past few decades. They are a mathemat-
ically simple, yet powerful, non-parametric Bayesian method leveraging
the simple structure of multivariate Gaussian distributions such as ana-
lytical marginalization and conditioning. The key idea behind GPs is to
assume that any finite set of function values of an arbitrary function f(x)
is jointly Gaussian distributed. As GPs constitute a cornerstone of the
methods discussed in this work, they are introduced in more detail in the
following.

Concept

To understand GPs, it is useful to first define a stochastic process. A
stochastic process can be thought of as a function {Y (t) : t ∈ T}, Y being
a random variable drawn from some probability measure P . T is often
referred to as index set [35]. With this, one defines a GP:

Definition 2.4.1. A Gaussian Process is a collection of random variables,
any finite number of which have a joint Gaussian distribution. [36]

This means that a GP is a stochastic process defined on any set T =
{t1, ..., tn} where the n values {y1, ..., yn} are drawn from a joint Gaussian
distribution:

N (t|µ,Σ) = 1√
(2π)n|Σ| exp

(
−1

2(t − µ)⊤Σ−1(t − µ)
)
. (2.40)

Here t = (t1, ..., tn)⊤ is the vector of indices, µ the mean vector (repre-
senting the expected values), and Σ the covariance matrix (capturing the
relationships between the indices). Any set of indices T is allowed for a
valid GP, but for our case, only the case where T is continuously defined
on Rd is of interest, although we restrict ourselves to the case where d = 1
for simplicity and explain the (straightforward) extension to higher dimen-
sions later. In the following, the index set of the continuous GP is denoted
as X.

The trick of GPs is to make µ and Σ functions of the index set X such that
for any two points x, x′ ∈ X, the mean and covariance can be expressed
as

m(x) = E[f(x)] , (2.41)
k(x, x′) = E[(f(x) −m(x))(f(x′) −m(x′))] . (2.42)

This allows defining a GP as a distribution over functions f(x), which can
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be expressed as

f(x) ∼ GP(m(x), k(x, x′)) , (2.43)

where m(x) and k(x, x′) are the mean and covariance functions, respec-
tively. The covariance function k(x, x′) is often called the kernel. The
definition as a stochastic process furthermore implies a consistency require-
ment (also called Kolmogorov’s extension theorem [37]), which demands
that any GP that specifies (y1, . . . , yn) ∼ N (x|µ,Σ) on any set X must
equally specify (y′

1, . . . , y
′
n) ∼ N (x′|µ′,Σ′) for any subset X ′ ⊂ X by

taking the relevant parts of µ and Σ. In other words, this means that
predictions about a finite subset of indices can be made without knowing
the full infinite-dimensional distribution.

Typically, this unconditioned version of the GP is called the prior GP4 as
it reflects the distribution of functions that one would draw if one had no
knowledge about the function. This GP prior is fully specified by the mean
and kernel functions.

Conditioning

To incorporate knowledge from a set of training points {(xi, yi = fi)|i =
1, . . . , n}, we condition the GP. The joint distribution of the training points
f(x) ≡ y and test points f∗(x∗) ≡ y∗ is given by:
[

f(x)
f∗(x∗)

]
≡
[

y

y∗

]
∼ N

([
m(x)
m(x∗)

]
,

[
K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
, (2.44)

where mi = m(xi) is the vector of the mean function and Ki,j = k(xi, xj)
is called the Gram matrix of the training points. Conditioning on the
observed values is straightforward for multivariate Gaussians:

f∗(x∗)|x,f(x) ∼ N (f∗,Σf∗) , (2.45)

with

µ(x∗) ≡ f∗ = m(x∗) + K(x∗,x)K(x,x)−1(f(x) − m(x)) , (2.46)

and

cov(f∗(x∗)) ≡ Σf∗ = K(x∗,x∗) − K(x∗,x)K(x,x)−1K(x,x∗) . (2.47)

4As we are using GPs in the context of Bayesian inference, the terminology can be
confusing as concepts such as priors, likelihoods, and posteriors exist both for the GP
as well as for the target distribution of the inference. We stick to a notation where the
quantities in the context of the GP are referred to as prior GP, GP-likelihood, etc.,
and the symbols get superscripts (e.g., pGP , LGP , . . . ).
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This conditioned GP is called the GP-posterior. For brevity, the explicit
dependence on the inducing points x∗ is dropped in the following.

Even with a prior zero-mean function m(x) = 0, the GP-posterior mean
can be non-zero. This motivates the choice of m(x) = 0, simplifying the
GP construction to the selection of an appropriate kernel function.

Figure 2.1 illustrates this conditioning process. The left side shows sample
functions from a GP prior withm(x) = 0 and k(x, x′) = exp

(−(x− x′)2/2
)
,

while the right side shows sample functions from a GP conditioned on
training points. The standard deviations are the square roots of the di-
agonal entries of the unconditioned and conditioned covariance matrices,
respectively

σ(xi) =
√

Σf(xi),ii , σ∗(x∗,i) =
√

Σf∗,ii . (2.48)
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Figure 2.1: Left: Sample functions drawn from a GP with m(x) = 0
and k(x, x′) = exp(−1/2(x − x′)2) (dashed lines) as well as the value of
the prior GP mean function and the standard deviation

√
k(x, x) = 1

(solid black line and gray band respectively). Right: Sample functions
drawn from the same GP (dashed lines), values of the posterior GP mean
(solid black line), and standard deviation (gray band) after conditioning
on five observations (red dots). Note how even with a zero prior mean
function m(x) = 0, one obtains a non-zero posterior mean. Furthermore,
after conditioning, only functions that pass through the training points
are allowed.

The framework can be extended to include associated noise in the training
data y = f(x) + ϵ, where ϵ is a random variable with variance σ2

n. This is
done by adding a noise term to the kernel function

k̃(x, x′) = k(x, x′) + σ2
nδx,x′ , (2.49)
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where δx,x′ is the Kronecker delta. In the conditioning step, this term
is only applied to the gram matrix between training points K̃(x,x) =
K(x,x) + σ2

nI, changing Eqs. (2.46) and (2.47) to

µ∗ = m(x∗) + K(x∗,x)K̃(x,x)−1(f(x) − m(x)) , (2.50)

and

cov(f∗) = K(x∗,x∗) − K(x∗,x)K̃(x,x)−1K(x,x∗) . (2.51)

The kernel function

As shown earlier, with the mean function typically assumed to be zero,
the GP is fully characterized by its kernel, which means that the main
challenge lies in choosing an appropriate kernel.

To choose a valid kernel, it is helpful to first establish the requirements it
must satisfy. These are:

1. The kernel needs to map k : Rd × Rd → R.

2. It needs to be symmetric: k(x, x′) = k(x′, x).

3. The covariance matrix obtained from the kernel needs to be positive
definite: zTK(x,x′)z ≥ 0 for all z ∈ RD\0 and with K(x,x′)ij =
k(xi,x

′
j) being the Gram matrix of x and x′. This condition is

fulfilled if and only if k(x, x′) ≥ 0 for all x, x′ ∈ X [38].

In addition to these strict mathematical requirements, the kernel should
also reflect the prior knowledge about the functional shape of f as well as
possible. As GPs are non-parametric models, the choice of kernel function
is not always trivial; however, there are some properties that translate
from the kernel into the GP. Three important properties of kernels that
influence the behavior of the GP are stationarity, differentiability, and
periodicity.

1. Stationarity means that a kernel function is invariant to translations,
i.e., k(x + z, x′ + z) = k(x, x) ∀ z. To achieve this, typically the
kernel is defined as a function of the distance between two points
r = |x− x′| (Euclidian distance if d > 1). If the kernel is stationary,
the GP has the same property.

2. Likewise, differentiability directly translates to the GP: If the kernel
is n times differentiable, the GP is n times differentiable as well.
Typically it is desirable that the kernel be at least once differentiable
to ensure that the GP is continuous.

3. A less commonly enforced property is periodicity k(x, x′) = k(x, x′ +
n ·z), n ∈ Z with periodicity z. This is less important for our case,
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as posterior distributions rarely have periodic directions (although
they do exist in the context of e.g., gravitational waves).

Having established these properties, we can now introduce some commonly
used kernels. This list is by no means exhaustive. Perhaps, the most
commonly used kernel function is the Radial Basis Function (RBF) kernel5.
Typically, it is defined as

kRBF(x, x′) ≡ kRBF(r) = C2 · exp
(

− r2

2l2

)
, l ∈ R , (2.52)

where the output scale C2 is commonly referred to as a constant kernel.
The RBF kernel is infinitely differentiable, stationary, and not periodic.
It produces very smooth GPs. It has been argued by some authors that
this makes the kernel unsuitable for applications where real-world data is
involved [36].

The Matérn is a generalization of the RBF kernel. It introduces an addi-
tional parameter ν which controls the differentiability [9]:

kMatern
ν (r) = C2 · 21−ν

Γ(ν)

(√
2νr
l

)ν

·Kν

(√
2νr
l

)
, l ∈ R+ . (2.53)

where Γ is the gamma function and Kν the modified Bessel function of
the second kind. The kernel is k times differentiable if ν > k [36]. For
ν → ∞, the Matérn kernel approaches the RBF kernel. Typically, the
Matérn kernel is used with ν = 3/2 or ν = 5/2, which correspond to once
and twice differentiable functions, respectively. In this case, the kernel
simplifies to

kMatern
ν=3/2 (r) = C2

(
1 +

√
3r
l

)
exp

(
−

√
3r
l

)
, (2.54)

kMatern
ν=5/2 (r) = C2

(
1 +

√
5r
l

+ 5r2

3l2

)
exp

(
−

√
5r
l

)
(2.55)

The exponential sine squared (ESS) kernel6 is an example of a stationary,
periodic, and infinitely differentiable kernel [39]:

kESS(r) = C2 exp




2 sin2
(

πr
p

)

l2


 , (2.56)

where p controls the periodicity.
5This kernel has numerous different names, among which are Squared Exponential

kernel and Gaussian kernel. We stick to RBF.
6This kernel is often simply referred to as the periodic kernel [39, 36, 40]. This is

somewhat misleading, as there are many ways to construct a periodic kernel.
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Examples of GPs conditioned with these kernels are shown in Fig. 2.2. The
GPs are conditioned on the same data but with different kernels. The RBF
kernel produces a very smooth GP, the Matérn kernels are less smooth, and
the ESS kernel is periodic. It is clear that the choice of kernel drastically
changes the interpretation of the data.

Kernels can be combined to create more complex kernels, allowing for
greater flexibility in modeling diverse data patterns. For example, the sum
and product of two valid kernels are also valid kernels [39]. This allows for
greater flexibility in modeling diverse data patterns.

Extending the kernel (and hence the GP) to higher dimensions is straight-
forward and done by promoting the kernel to a function of Rd × Rd → R,
where d is the dimensionality of the data. For this we introduce an addi-
tional dimension such that Xik = (xi)k with k = 1, . . . , d 7. For stationary
kernels such as the RBF kernel, this can be achieved by either using the
same length scale for all dimensions (promoting the scalar distance r to the
Euclidean distance r = |x−x′|) or by using a different length scale for each
dimension. The latter is called an anisotropic kernel, which offers greater
flexibility at the cost of additional hyperparameters. The anisotropic RBF
kernel is defined as:

kRBF,d(Xi,X′
i) = C2 exp

(
−

N∑

i=1

(Xik − X′
ik)2

2l2k

)

= 1
C2d−2

d∏

i=1
kRBF(Xik,X′

ik) , (2.57)

where l is a vector of length scales for each dimension. The anisotropic
Matérn and ESS kernels are defined analogously.

In Paper I, Paper II and Paper III we use anisotropic kernels.

Choosing the kernel’s hyperparameters

The kernel typically has one or more free hyperparameters, henceforth
denoted as λ = {λ1, . . . , λnλ

}. These can be determined in a Bayesian way
7It is worth taking a moment here to discuss what it means to promote x to a

vector, as there are three different dimensionalities appearing in our equations now:
(i) the dimensionality of the data d, which refers to the number of dimensions that
each training and test point has (e.g., d = 2 if the goal is to approximate a function
f(x, y)), (ii) the dimensionality of the index set n, which is the number of observations
in the data set (sticking to our example from before, let’s say we have the observations
f(0, 1), f(1, 2), f(2, 3), f(2, 2), then n = 4) (iii) the number of the kernel’s hyperparam-
eters nλ, which can be seen as living in a nλ-dimensional space (if we want to map our
function f(x, y) with the RBF kernel from Eq. (2.57), nλ would be 3). For Eqs. (2.46)
and (2.50), this means that f(x) and m(x) go from n-vectors to n × d tensors. To
make this change clear, we henceforth call the training set X and index it with i, k.
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Figure 2.2: GPs with four different kernels: RBF (top left), Matérn
ν = 3/2 (top right), Matérn ν = 5/2 (bottom left), and ESS (bottom
right). The kernels are defined in Eqs. (2.52) and (2.54) to (2.56). The
GPs are conditioned on the data shown as red dots. The solid black line
is the GPs conditioned mean, and the standard deviation is depicted as
the gray shaded region. The Matérn kernels are less smooth than the
RBF kernel, and the ESS kernel is periodic.

through the likelihood of the data given the GP [36]

LGP(y|X,λ) =
ˆ
p(y|f ,X,λ)p(f |X,λ)df (2.58)

= −1
2yT (K + σ2

nI)−1y − 1
2 log |K + σ2

nI| − n

2 log 2π ,

(2.59)

where y is the vector of training data and K is the Gram matrix of the
training set X. Unfortunately, evaluating this likelihood involves the com-
putationally expensive matrix inversion of the Gram matrix. This makes
full Bayesian inference of λ infeasible in practice. Instead, one typically
finds the maximum likelihood estimate, otherwise known as Maximum a
Posteriori (MAP) or Maximum Likelihood type II estimate of λ using a
gradient-based optimization algorithm. An alternative technique, which
performs approximate inference of the GP likelihood, has been proposed
in [41].

Putting all the ingredients together, one arrives at the full GP regression
algorithm. GP regression (sometimes also referred to as Kriging) involves
fitting a GP with kernel k(x,x′|λ) to a training set X,y with associated
noise σn. This is done by finding the MAP estimate of λ by maximizing
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the marginal GP log-likelihood in Eq. (2.58). This approach is convenient
because the only choice left to the user is that of a suitable kernel function.
Furthermore, and in contrast to most NNs, the hyperparameters of the GP
typically have an intuitive interpretation.

The algorithm consists of two simple steps:

1. In the training step, the hyperparameters of the model are optimized
by maximizing Eq. (2.58). Additionally, (K+σ2

nI)−1 is precomputed
for use in the prediction step.

2. In the prediction step, the GP is conditioned according to
Eqs. (2.50) and (2.51).

The algorithm is divided into these two steps to highlight the distinction
between the computationally expensive O(N3) training phase and the rel-
atively cheap O(N2) prediction phase, where N is the number of points in
the training set.

2.4.3 Active Learning

Active Learning (see e.g., [42] for a review) is an umbrella term for methods
that aim to reduce the number of training points needed for a model to
achieve a desired performance. In machine learning lingo, the idea is to let
the model decide which data points to label next, rather than providing
a predetermined dataset. In physics terms, assume that the goal is to
learn a mapping f(x) from some input space X to some output space
Y . In passive learning, the model is fed a fixed set of training points
X,y where y = f(X) and trained on this data. In Active Learning, the
model is allowed to (typically iteratively) modify the current set of training
points to optimize the performance of the model. This is particularly useful
when evaluating f(x) is computationally expensive or when training on
large datasets becomes slow. Active Learning can be done in a discrete
space, e.g., when there is only a finite dataset to choose from, or in a
continuous space, e.g., if f(x) can be evaluated at any point. The case
that is of interest for us (Bayesian inference of continuous parameters) is
the latter.

Typically, the task of Active Learning strategies is to find the smallest set
possible that still allows the model to reach a certain performance. This
can be done in conjunction with the task of exploring the sampling space
as efficiently as possible.

To illustrate the concept, consider MH-MCMC 8(defined in Section 2.2.1).

8MH-MCMC can be considered an Active Learning strategy, though not a good
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A simple way to extend HM-MCMC to an Active Learning strategy would
be to modify the proposal distribution as the sampling progresses as done
in e.g., [43, 44] by using a covariance matrix that is estimated from the
current state of the chain.

Active Learning typically relies on some measure to quantify the informa-
tiveness of a data point given the current state of the model. This measure
can be optimized to find new samples to query, and its choice depends on
what the model is supposed to achieve. In the context of GPs, this measure
is called the acquisition function and is typically a function of the posterior
GP. In the context of GP regression for surrogate inference of probability
densities, two concepts are of particular interest that we borrow heavily
from: Bayesian optimization and Bayesian quadrature.

Bayesian optimization

Bayesian optimization (BO) is a method for optimizing black-box func-
tions that are expensive to evaluate. It uses the GP as a surrogate model
and iteratively optimizes an acquisition function to determine the next
point to evaluate. An example of an acquisition function is the Expected
Improvement (EI), which is defined as

EI(x) = E
[
max(0, f(x) − f(x+))

]
, (2.60)

where x+ is the point with the highest value of f found so far. The goal
is to identify the point expected to provide the greatest improvement over
the current best point, given the model. For GPs, the EI is analytical and
given by [45]

EI(x) = (f(x) − µ(x+))Φ(z) + σ(x)φ(z) , (2.61)

where z = (f(x) − µ(x+))/σ(x) and Φ = 1/2
(
1 + erf(z/

√
2)
)

and φ =
1/

√
2π exp(−z2/2) are the standard normal distribution CDF and PDF,

respectively. The point that maximizes the EI is evaluated next. This
process is repeated until a stopping criterion is reached.

From the structure of Eq. (2.61), one can see two competing terms: one
term is proportional to the difference between the current best point and
the point to be evaluated and encourages sampling near the current best
point (exploitation). The other term is proportional to the uncertainty
of the GP and encourages sampling in regions of high uncertainty (explo-
ration). This is a common feature in Active Learning strategies and is
known as the exploration-exploitation trade-off.

one. Its next move depends only on the last, and the query step must occur before
rejection, offering no computational savings.
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The EI is just one of many possible acquisition functions, with alternatives
like the Probability of Improvement (PI) [45] and Upper Confidence Bound
(UCB) [46] offering different balances between exploration and exploita-
tion.

Bayesian quadrature

While BO focuses on optimizing a target function, Bayesian quadrature
(BQ) applies similar principles to estimate the integral of a function [41].
Let

I =
ˆ x1

x0

f(x)dx (2.62)

be the integral of some arbitrary function f(x) over possibly multiple di-
mensions such that x ∈ R. We restrict ourselves to the one-dimensional
case for simplicity, but the generalization to x ∈ Rd is straightforward.
The idea is to use the GP as a surrogate model for the integrand. The
expectation value of the integral is then

E[I|D] =
ˆ x1

x0

µf |D(x)dx , (2.63)

and the variance

var[I|D] =
ˆ x1

x0

ˆ x1

x0

covf |D(x, x′)dxdx′ , (2.64)

where µf |D and covf |D are the mean and covariance of the posterior GP
(conditioned on the training data D), respectively. This not only provides
an estimate of the integral but also an estimate of its uncertainty. With
this, it is possible to construct an acquisition function that is optimized to
find the next point to evaluate.

The disadvantage of this approach is that the d and 2d integrals in Eqs. (2.63)
and (2.64) still have to be computed numerically. How this can be done
in an efficient way to make BQ feasible for Bayesian inference is the main
topic of Paper I and Paper II.

An illustration of BQ is shown in Fig. 2.3, showing how the GP formulation
induces a normal distribution over the value of the integral.

2.5 The role of machine learning in Bayesian inference

In the previous sections, we have introduced “traditional” Monte Carlo
methods, approximate inference methods, and Bayesian machine learning
methods. These methods are frequently combined to address complex and
expensive inference problems. This section is dedicated to discussing the
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Figure 2.3: Illustration of the BQ procedure. Left: GP fit to the func-
tion f(x) = sin(x) + cos(2x) − 1/2 sin(3x) (red) for. The GP has been
conditioned on 5 training points (red dots). µ(x) and σ(x) are shown as
the black line and gray band, respectively. The dashed lines show four
sample functions drawn from GP(x|X, y). Right: Normal distribution
induced by BQ for the integral I =

´ 2π
0 f(x)dx = 0 (gray distribution).

The true value is shown in red. The four dashed lines correspond to the
integrals of the sample functions.

role of machine learning in Bayesian inference and to relating the different
algorithms to each other. We also give an overview of the current state of
research. The specific application to LISA and gravitational wave science
is discussed in Chapter 3.

2.5.1 Speeding up aspects of the likelihood

A straightforward way to use machine learning in Bayesian inference–
without modifying the inference algorithm–is by speeding up the likelihood
computation itself. This can be achieved by (i) speeding up parts or the
entirety of the forward model (simulator), see e.g., [47, 48, 49, 50], (ii) ac-
celerating the likelihood computation itself (i.e., the comparison of model
to data), or (iii) mapping both the simulator and data to a lower dimen-
sional space in which the forward model and likelihood can be computed
cheaply (see e.g., [51]).

This approach has seen extensive use in a variety of problems. Its main
advantage is that it directly addresses the slowest parts of the computation,
potentially incorporating physics knowledge (e.g., symmetries) into the
model. The main disadvantage is that the model must be trained over
a large parameter space to be effective and that the model is typically
limited to the specific problem on which it was trained. Additionally, the
model can introduce biases into the inference process if it is not trained
carefully.
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2.5.2 Enhancing traditional Monte Carlo methods

One of the simplest and most robust uses of machine learning in Bayesian
inference is to modify and enhance traditional sampling methods. This
can be done in a variety of ways, one approach being the use of a Normal-
izing Flow as a proposal distribution. The idea is to learn a representation
of the posterior distribution as the sampling progresses, using this rep-
resentation (or typically some enlarged distribution to avoid bias) as a
proposal distribution. This has been done for different flavors of MCMC,
see e.g., [52, 53, 54] and Nested sampling [55, 56, 57]. The goal is to im-
prove the acceptance rate of the proposed samples as the learned proposal
distribution approaches the target distribution. This approach is similar
to providing simple information, such as the mean and covariance of the
current samples, to the proposal distribution but offers greater flexibility.
Furthermore, the hope for MCMC is that this approach mitigates the risk
of missing modes if the posterior is multimodal with modes spaced far
apart.

The key advantage of this approach is that it retains some of the robustness
of traditional methods (such as the detailed balance of MCMC) while of-
fering the flexibility of machine learning methods. The main disadvantage
is that training the Normalizing Flow requires significant computational
power. Additionally, it typically cannot drastically reduce the number of
samples needed, as the samples are still drawn from the posterior distri-
bution and, like all machine learning methods, it risks overfitting.

2.5.3 Simulation-based inference with machine learning

SBI, even more than MCMC and Nested sampling, naturally lends itself
to accelerating the inference process. There are typically two ways in
which this is achieved: by learning a lower-dimensional representation of
the data or by learning the mapping from the prior to either the likelihood,
likelihood ratio, or the posterior.

The first approach is to use an NN to learn a lower-dimensional represen-
tation of the data. This can be done in a supervised way by training the
network on the data. The network is then used to project the data to a
lower-dimensional space, speeding up the comparison step. Learning an op-
timal representation can typically be done with an autoencoder [58].

The second approach, often called amortized, refers to the idea that the
expensive training of the simulator is offset by the low cost of inference
at runtime. It aims to learn the mapping from the prior to the likeli-
hood, likelihood ratio, or posterior [26]. They differ in which quantity is
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learned:

• Neural Posterior Estimation (NPE) estimates the posterior density
p(θ|D) directly by learning the mapping from the prior to the pos-
terior, typically using some density estimator like a Normalizing
Flow [59, 60, 61, 62].

• Neural Likelihood Estimation (NLE) estimates the likelihood L(D|θ)
by learning a proxy of the likelihood function from data of the for-
ward model [63, 64, 61]. This can be used in traditional samplers
such as MCMC as a fast substitute for the likelihood.

• Neural Ratio Estimation (NRE) estimates the likelihood-to-evidence
ratio L(D|θ)/Z(D) [65, 66, 67, 68, 69, 70, 71, 72, 73]. The advantage
of this is that it can be used with different priors, enabling flexibility
in Bayesian model comparison without retraining the model.

2.5.4 Machine learning for Variational inference

A machine learning-powered emulator like an NN, Normalizing Flow, or
GP can be viewed as a variational model itself. This is because it serves
as an approximate surrogate of a true function, making it natural to use
in the context of VI. To this extend the machine learning model can be
used at several “depths” again: either by emulating the likelihood or the
posterior or by using it to get proposals for the variational distribution. A
natural way of obtaining these points is Active Learning, although this is
not the only way.

Like for SBI, a straightforward choice for the machine learning model is
a Normalizing Flow, as it naturally maps a probability distribution [23,
22, 24] but also simple deep NNs are an option [74]. GPs can be powerful
models too, as they have fewer tunable hyperparameters and are more
interpretable [75, 25, 76, 77, 41, 78]. In this work, we focus on the use
of GPs for generating a surrogate model of the posterior distribution with
Active Learning.

Our approach stretches the definition of VI, as we do not learn a simpler
representation of the data but instead build an emulator of the posterior.
Nevertheless, the approach presented in Paper I, Paper II, and Paper III
can broadly be seen as a VI approach.
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3 Inference in the LISA mission

As two of the papers that have been produced in the context of this work
are related to different aspects of inferring astrophysical and cosmologi-
cal signals within the commissioned Laser Interferometer Space Antenna
(LISA) mission, this chapter provides a brief overview of the mission itself,
the sources that are expected to be observed, and the challenges that the
data that the LISA mission will provide pose to correctly identifying and
characterizing these sources.

The chapter is structured as follows: Section 3.1 provides a brief overview
of the LISA mission and its objective as it stands today. Section 3.2 dis-
cusses the different types of sources that are expected (or theorized) to
be observed by LISA. Furthermore, the role of the instrumental noise is
discussed briefly. Section 3.3 discusses the challenges that the LISA data
pose to correctly identifying and characterizing these sources in the over-
lapping signal-dominated datastream and how these challenges have been
addressed so far.

3.1 The LISA mission

The LISA mission is a planned space-based gravitational wave observa-
tory that is currently in the early implementation phase. The mission is
a collaboration between the European Space Agency (ESA) and the Na-
tional Aeronautics and Space Administration (NASA) and is expected to
be launched in the mid-2030s [79, 80]. It is designed to detect gravitational
waves in the frequency range of ∼ 10−4 to ∼ 1 Hz, which is a frequency
range that is yet unexplored. Compared to other gravitational wave de-
tection experiments, LISA sits between the ground-based detectors like
LIGO, Virgo, and Kagra (LVK), which are sensitive to higher frequency
gravitational waves in the ∼ 100 Hz range [81, 82, 83], and pulsar timing
arrays (PTAs), which are sensitive to lower frequency gravitational waves
(∼ 10−9 Hz) [84].

LISA will consist of three spacecraft in a triangular configuration, with
each spacecraft separated by ≈ 2.5 · 106 km in a heliocentric orbit, trailing
the Earth by 20◦. The constellation acts as a Michelson interferometer,
where each spacecraft contains a free-falling test mass that is shielded from
external forces. The test masses are monitored by laser interferometry, and
the phase difference between the laser beams is used to infer the presence
of gravitational waves.

Currently, the mission is expected to last a minimum of 4.5 years, with a
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possible extension to 10 years. The mission is expected to detect a wide
range of sources like double white dwarf systems, extreme mass ratio in-
spirals, and black hole mergers. The mission is also expected to detect an
astrophysical stochastic background of gravitational waves, which is a su-
perposition of many unresolved sources, and possibly a cosmological back-
ground of gravitational waves originating from the early Universe.

Part of the mission objective is not only to provide the raw data to the
scientific community but also to provide a single catalog of gravitational
wave source candidates that can be used by the community to perform
follow-up studies. Furthermore, at the same time as the mission, low-
latency data alerts will be generated from a faster pipeline that will be
used to alert the community of potential gravitational wave events that
can be used to search for electromagnetic counterparts [80].

As of 2025, the mission has been adopted by ESA and is currently in
the early implementation phase. The current projected launch date is in
2035.

3.2 Source types and noise in LISA

The currently operational set of Michelson interferometers (LVK) are mainly
sensitive to binary black hole, binary neutron star, and binary neutron star-
black hole mergers and are noise-dominated experiments [81]. Conversely,
LISA is expected to be a signal-dominated experiment containing a wide
zoology of overlapping signals coming from different sources at once. The
sources that are expected to be observed by LISA can be broadly divided
into two categories: astrophysical sources and cosmological sources.

Astrophysical sources are sure to be observed by LISA, with some sources
expected to be numbering in the thousands [80]. Some of these sources are
expected to be observed as individual signals in the data, and the param-
eters of these sources can be inferred with high precision. Cosmological
sources, on the other hand, may or may not be observed by LISA as there is
currently no complementary experiment that could confirm the presence of
such a signal. Furthermore, ΛCDM slow roll inflationary cosmology does
not predict such a signal. Nevertheless, there are a wide variety of sig-
nals that could be generated by both standard model physics and beyond
standard model physics during different periods of the Universe’s history.
These signals manifest themselves as a stochastic background of gravita-
tional waves in the data. The amplitude of the cosmological background
is highly model-dependent, ranging from a barely detectable signal to one
that dominates the LISA band [85].
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3.2.1 Astrophysical sources

In the context of LISA, astrophysical sources are localized emitters of
gravitational waves, generated by compact objects. These sources can
broadly be divided into two categories: resolved sources and unresolved
sources. Resolved sources are sources that are expected to be observed
as individual signals in the data, while unresolved sources contribute to a
stochastic background of GWs but cannot be distinguished as individual
signals.

Compact binary systems produce GWs through quadrupole radiation, which
is emitted as the system loses energy and angular momentum. To under-
stand this effect, it is instructive to linearize the Einstein equation [86]:

Gµν = 8πGTµν , (3.1)

where Gµν is the Einstein tensor, G is the gravitational constant, and
Tµν is the energy-momentum tensor. We are using natural units where
c = 1. Assuming that the metric is nearly Minkowski, gµν = ηµν + hµν

with ηµν = diag(−1, 1, 1, 1) and a small perturbation hµν , and momen-
tarily introducing the trace-reversed perturbation h̄µν = hµν − 1

2ηµνh, the
linearized Einstein equation can be written as

Gαβ = −1
2
[
h̄ ,µ

αβ,µ + ηαβh̄
,µν

µν − h̄ ,µ
αµ,β − h̄ ,µ

βµ,α

]
= 8πGTαβ , (3.2)

where (),µ = ∂µ(). In the Lorentz gauge (h̄ ,µ
µν = 0), this simplifies

to:

□h̄αβ = −16πGTαβ , (3.3)

where □ = ηµν∂µ∂ν is the d’Alembert operator. We see that away from
the source, where Tαβ = 0, the solution to this is a plane wave, h̄αβ =
Aαβe

ikµxµ , where kµk
µ = 0. This is the gravitational wave.

Typically, one introduces the transverse-traceless (TT) gauge, where h̄ = 0,
which implies h̄µν = hµν . The gauge is chosen such that

h0,µ = 0 , hi
i = 0 , hij

,j = 0 , (3.4)

meaning that the information about the GWs is contained in the spatial
part of the perturbation. The GWs are described by the two polarizations
h+ and h×, which are the two independent solutions to the wave equation
in the TT gauge. The GWs are then described by

hij = h+eij,+ + h×eij,× , (3.5)

where eij,+ and eij,× are the two polarization tensors.
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For compact binary systems, computing the emission involves solving the
Einstein Equation (3.1) for the energy-momentum tensor of the system.
The energy-momentum tensor for a binary system of point masses can be
written as [86]

Tµν(x, t) =
2∑

a=1
ma

ˆ
dsauaµuaνδ

(4)(x− xa(sa)) , (3.6)

where ma is the mass of the a-th object, uaµ is the four-velocity of the a-th
object, and xa(sa) is its worldline. If we introduce γ = 1/

√
1 − v2, where

v is the velocity of the object, we can write the four-velocity as uaµ =
γa(1,va). The energy-momentum tensor can then be written as

Tµν(x, t) =
2∑

a=1
maγavaµvaνδ

(3)(x − xa(t)) , (3.7)

where we have used that the objects are point masses and that the world-
lines are parametrized by the time t.

Solving the Einstein Eq. (3.1) at the source with the matter tensor for the
binary defined above is a hard task because it involves the full non-linear
regime and is typically done using numerical relativity. This is particularly
true close to the merger, where the objects are moving at relativistic speeds.
However, in the weak field limit, where the objects are moving at non-
relativistic speeds, the Einstein equation can be solved perturbatively. This
is typically done using the post-Newtonian (PN) expansion, where the
metric is expanded in powers of v/c, although other formalisms, like the
effective-one-body formalism, also exist [86].

To compute the waveform at large distances, it is customary to use the
multipolar post-Minkowskian formalism [87], which provides a systematic
expansion of the metric in terms of multipole moments of the source. In
this framework, the leading-order (quadrupolar) contribution to the spatial
components of the metric perturbation in the harmonic gauge is given
by

hij(t,x) = 2G
c4r

Q̈TT
ij (t− r/c) , (3.8)

where QTT
ij is the transverse-traceless part of the mass quadrupole moment

of the source, and r ≡ |x| is the distance from the source.

The far-field approximation assumes that the observer is located at a much
greater distance r than the characteristic wavelength λ of the GWs and the
size R of the source, i.e., r ≫ λ ≫ R. Under this assumption, the wave-
form depends on the retarded time tret = t− r/c, and spatial dependence
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enters only through an overall 1/r decay and the angular dependence of
the multipole moments.

Typically, one expresses the equations that arise in terms of the chirp
mass Mc = (m1m2)3/5/(m1 + m2)1/5, the symmetric mass ratio η =
m1m2/(m1 + m2)2, where m1 and m2 are the individual masses of the
two objects in the binary, and the luminosity distance dL from source to
observer.

For binary systems in quasi-circular orbits, the polarization amplitudes
depend on the inclination angle ι between the orbital angular momentum
and the line of sight:

h+ ∝ (1 + cos2 ι) cos(2ϕ) , (3.9)
h× ∝ 2 cos ι sin(2ϕ) , (3.10)

where ϕ is the orbital phase.

A GW detector measures a linear combination of h+ and h×, weighted
by antenna pattern functions F+ and F× that depend on the detector
orientation and source sky location:

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t) , (3.11)

where ψ is the polarization angle and (θ, φ) specify the source location in
the sky.

For sources at cosmological distances, the propagation of GWs must be
treated in a Friedmann-Lemaître-Robertson-Walker (FLRW) background
(see Section 4.1.2 for an in-depth discussion). In this case, the gravitational
wave equation is modified to include the expansion of the Universe. The
tensor perturbation hij satisfies:

ḧij + 3Hḣij + k2

a2hij = 0 , (3.12)

where a(t) is the scale factor and H = ȧ/a is the Hubble parameter. In
the subhorizon regime (k/a ≫ H), the solution behaves approximately as
a redshifted plane wave:

hij(t) ∝ 1
a(t) cos

(
k

ˆ
dt′

a(t′)

)
. (3.13)

As a result, both the GW amplitude and GW frequency redshift ∝ 1/a(t),
analogously to electromagnetic waves. In practice, observed waveforms
from distant sources must be rescaled by the redshift z as:

fobs = fem
1 + z

, hobs = hem
1 + z

. (3.14)

37



Inference in the LISA mission

Paper III, produced in the context of this work, focuses on inferring the
parameters of three types of astrophysical sources: double white dwarf
(DWD) systems, stellar mass black hole binaries (stBHBs), and supermas-
sive black hole binaries (SMBHBs). Paper IV assumes that all resolvable
sources have been subtracted from the data, with only the unresolved
sources remaining as a stochastic background. In the context of a cosmo-
logical background, we call this the astrophysical foreground, which can be
divided into two contributions: the galactic foreground, consisting of un-
resolved DWDs in the Milky Way, and the extragalactic foreground, con-
sisting of unresolved stBHBs and SMBHBs and other extragalactic stellar-
mass sources, such as binary neutron stars and neutron-star-black-hole
binaries.

Some SMBHBs are projected to merge within the LISA band and there-
fore require a full numerical relativity treatment. On the other hand,
DWDs within LISA’s sensitivity are very far from merger and therefore
can be treated at low order in post-Newtonian (PN) theory. stBHBs are
expected to merge outside the LISA band and can also be treated using
post-Newtonian approximations.

In the following, we briefly explain DWDs, stBHBs, and SMBHBs focusing
on the main properties that are relevant for the inference of these sources
in the context of LISA and only mention other astrophysical sources that
may contribute to the LISA signal.

Double white dwarf systems

Double white dwarf (DWD) systems are expected to be the most common
source of GWs within the LISA band, with expected numbers for resolv-
able systems being as high as 104 individual sources [80]. They form the
bulk of the binary systems within the Milky Way (galactic binaries). DWD
systems are binary systems consisting of two orbiting white dwarfs. White
dwarfs are remnants of low-to-intermediate mass stars, weighing between
0.17 and 1.33 M⊙ [88, 89], and are supported against gravitational collapse
by electron degeneracy pressure. DWDs within the LISA band are in the
early phases of inspiral, thus slowly losing energy and angular momen-
tum to gravitational waves. The signal from these systems is expected
to be nearly monochromatic, with the signal frequency only increasing
marginally over the mission duration.

This makes generating waveforms for DWDs computationally cheap as the
evolution can be approximated very well by a simple sinusoidal with a
slowly drifting frequency ḟ that is projected to be in the range of 10−4 Hz
to 10−3 Hz [90]. This reduces the parameter space for these sources to 8:
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f, ḟ , A, ϕ, ι, ψ, θ, ϕ where f is the frequency, ḟ is the frequency derivative,
A is the amplitude, ϕ is the phase, ι is the inclination angle, ψ is the
polarization angle, and (θ, ϕ) are the sky location angles. As LISA follows
a heliocentric orbit, the source location is typically expressed in ecliptic
coordinates through the ecliptic longitude λ and latitude β.

Due to these properties, DWDs are typically searched for and analyzed in
narrow frequency windows. A challenge that arises from this is that mul-
tiple sources that are close in frequency lead to so-called confusion, where
the signals from the sources overlap and are hard to distinguish.

Lastly, some of the DWD systems in our galactic neighborhood are known
from electromagnetic observations. These systems are called verification
binaries and will be used to calibrate LISA.

Stellar mass black hole binaries

Stellar mass black hole binaries (stBHBs) are binary systems consisting
of two black holes with masses in the range of ∼ 5 M⊙ to ∼ 100 M⊙.
stBHBs are expected to merge outside the LISA band, and therefore the
signal from these systems is expected to be a chirp signal with a frequency
that increases over time, eventually leaving the LISA band and merging
within the LVK band later [80]. The signal from these systems is expected
to be more complex than the signal from DWDs as its frequency increases
significantly over time. This makes generating waveforms for stBHBs com-
putationally more expensive than for DWDs as they exhibit a more com-
plicated evolution, which increases the number of parameters needed to
describe the signal. Assuming quasi-circular orbits (neglecting eccentric-
ity), neglecting environmental effects, and assuming that the spins of the
black holes are aligned with the total angular momentum of the system,
the full parameter space describing a BHB system is 11 dimensional, con-
taining four intrinsic parameters: the masses m1, m2, which are typically
expressed through the chirp mass and symmetric mass ratio (or reduced
mass ratio δµ = (m1 + m2)/(m1 + m2)), and two spins χ1, χ2, and the 7
extrinsic parameters: the luminosity distance dL, the inclination angle ι,
the polarization angle ψ, the position (λ, β), the initial phase ϕ0, and the
time to coalescence tc.

Numerous tools for computing waveforms for stBHBs have been developed
and optimized over the last decade of LVK observations (see e.g., [91, 92,
93])
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Supermassive black hole binaries

Supermassive black hole binaries (SMBHBs) are binary systems consisting
of two supermassive black holes with masses in the range of ∼ 105 M⊙ to
∼ 109 M⊙ [94, 95]. SMBHBs in the mass range between ∼ 105 M⊙ and
∼ 107 M⊙ (see Fig. 3.1) are expected to merge within the LISA band and
therefore require a full numerical relativity treatment. The signal from
these systems is expected to be a chirp signal, potentially merging within
the LISA mission duration. If observed, the signal from these systems is
expected to be the loudest in the LISA band, reaching a signal-to-noise
ratio of ∼ 103 for the loudest systems [96, 97]. Generating waveforms
for SMBHBs is computationally expensive, as modeling the merger and
ringdown is a computationally expensive task, and due to their high signal-
to-noise ratio (SNR), inferring the source parameters of SMBHBs requires
accurate waveforms [98]. As they furthermore evolve over a large range of
frequencies, the waveform generation requires a large number of frequency
bins. Under the same assumptions as for the stBHBs, the number of
parameters describing a SMBHB system is also 11.

Other sources

Other types of sources that are expected to be observed by LISA include
extreme mass ratio inspirals (EMRIs), which are systems consisting of a
stellar mass compact object orbiting a supermassive black hole, and white
dwarf-neutron star binaries. Furthermore, there is the possibility of de-
tecting bursts from cosmic strings, signals from supernovae, and poten-
tially exotic sources that have not yet been modeled [80]. Exploring these
sources and their properties would be beyond the scope of this work.

Instead of expressing the signal amplitude as the strain amplitude h as de-
fined in Eq. (3.11), one typically defines the characteristic strain amplitude
hc as

hc(f)2 = 4f2
∣∣∣h̃(f)

∣∣∣
2
, (3.15)

where h̃(f) is the Fourier transform of the strain amplitude h(t). For
nearly monochromatic sources like DWDs, the characteristic strain is given
by [99]

hc(f) =
√

2f2

ḟ
h0 , (3.16)

where h0 is the root-mean-square amplitude of the source. Figure 3.1 shows
a simulated population of sources that could be observed by LISA, contain-
ing the astrophysical source types that have been presented above.
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Figure 3.1: simulated population of sources that could be observed by
LISA containing galactic binaries (with verification binaries highlighted),
stBHBs, SMBHBs and one EMRI. Furthermore, the galactic background
is depicted (denoted as confusion noise) where the threshold for detec-
tion is set at a SNR of 7. The teal line shows the strain sensitivity of
LISA, with the dashed black line denoting the total noise curve if tak-
ing the confusion noise into account. A cosmological contribution to the
stochastic GW background is not shown but would contribute to the
total noise curve. The figure is taken in slightly adapted form from [80].

3.2.2 Cosmological sources

Cosmological sources are sources that may be observed by LISA but for
which there is currently no complementary experiment that could confirm
the presence of such a signal. These sources are expected to contribute
to a stochastic background signal that is projected to be nearly isotropic
in most scenarios that generate such a background. In particular, an en-
hancement of scalar perturbations during inflation sources gravitational
waves at second order. Studying how such a signal can be detected and
characterized by LISA is the topic of 4 and Paper IV. This mechanism can
also generate primordial black holes, which could make up a significant
fraction of the dark matter observed today. The two other scenarios most
commonly discussed are cosmic strings [100, 101] and strong first-order
phase transitions in the early Universe (typically around the electroweak
scale) [102].

Although it is certainly possible to express the amplitude of gravitational
waves from cosmological sources in terms of the characteristic strain ampli-
tude hc, the amplitude of the signal is typically expressed in terms of the en-
ergy density per log frequency of the gravitational waves ΩGW, as a fraction

41



Inference in the LISA mission

of the critical energy density of the Universe ρcrit (see Section 4.1.2):

ΩGW(f) = 1
ρcrit

dρGW
d ln f , (3.17)

where ρGW is the spectral energy density of the gravitational waves. The
characteristic strain amplitude hc can then be expressed in terms of ΩGW

as [99]

hc(f)2 = 3H2
0

2π2
ΩGW(f)
f2 , (3.18)

where H0 is the Hubble constant.

3.2.3 Definition of noise and signal-to-noise ratio

The data that LISA will provide will be a superposition of the signals
from the sources that are present in the data and the instrumental noise.
The instrumental noise is expected to be a combination of white noise
and a low-frequency noise component that is expected to be correlated
between the different LISA arms [103, 104]; however, for simplicity, we
assume stationary Gaussian noise. This is a common assumption in LISA
data analysis preparation studies. Under this assumption the noise is fully
characterized by the one-sided power spectral density (PSD) [99]

⟨ñ(t)ñ(t′)⟩ = 1
2δ(t− t′)Sn(f) , (3.19)

where ñ(t) is the noise in the Fourier domain, Sn(f) is the one-sided PSD,
and ⟨. . . ⟩ denotes the ensemble average. Analogously to the characteristic
strain amplitude hc, the noise amplitude is typically expressed in terms of
the square root of the PSD as

hn(f) =
√
fSn(f) . (3.20)

The squared signal-to-noise ratio (SNR) ρ2 of a signal with strain h can be
expressed in terms of the characteristic strain amplitude hc and the noise
amplitude hn as [99]

ρ2 =
ˆ ∞

0
df 4|h̃(f)|2

Sn(f) =
ˆ ∞

−∞
d(log f)

[
hc(f)
hn(f)

]2
, (3.21)

3.3 Source inference in LISA

The signal-dominated source landscape consisting of many thousands of
overlapping signals, with a partially unknown noise curve as well as a
potential cosmological background of gravitational waves, poses a number
of challenges to correctly identifying and characterizing the sources in the
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data. On top of this, neither the existence of all source types nor the
number of sources in the LISA data is known. This problem, sometimes
referred to as the “cocktail party” problem [105], is a major challenge for
the LISA mission.

Different strategies have been proposed to infer the source population of
LISA from this single datastream. The most ambitious approach, referred
to as the global fit, attempts to fit the entire datastream with a model that
contains all possible sources that could be present in the data. Of course,
doing this with classic Monte Carlo methods is computationally infeasible,
as the parameter space for ∼ 104 sources with ∼ 10 parameters each is
way too large to be explored by an algorithm like an MCMC in reasonable
time. Furthermore, the unknown number of sources in the data calls for a
flexible approach such as reversible jump MCMC or Gibbs sampling.

Steady progress is being made to implement a prototypical global fit [106,
107, 108, 109, 110] where sources are either inferred individually or in
groups.

An additional problem that remains is distinguishing between the astro-
physical foreground, the cosmological background, and instrumental noise.
Under the assumption that the shapes of the foregrounds and noise are
well known, Paper IV explores how well they can be distinguished in the
scalar-induced gravitational wave case, both if the signal is known and if
it is only assumed to be scalar-induced without any prior knowledge of the
shape of the signal.

Machine learning in LISA inference

The aforementioned difficulties in inferring the source population of LISA
from the data have led to numerous studies exploring the use of machine
learning techniques at different stages of the inference pipeline.

The high dimensionality of GW parameter spaces and costly waveform
evaluations motivated early adoption of VI and SBI, initially in the context
of inference for LVK events. In [24], a conditional variational autoencoder
is used to learn the mapping from the data to the posterior distribution of
the source parameters. In [107, 111, 112], VI is used to infer the source pop-
ulation of galactic binaries in the LISA data. Furthermore, the approach
that we use in Paper III could be classified as a VI approach.

SBI, particularly utilizing Normalizing Flows, has seen an even greater
adoption in PTA, LVK, and LISA applications [113, 114, 115, 116].

For a more complete review of how ML has been used in LISA inference,
see [117].
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4 Scalar-induced gravitational waves from
inflation

This chapter gives a theoretical introduction and explains how gravita-
tional waves are produced from scalar perturbations generated during in-
flation. The chapter is structured as follows: Section 4.1 introduces the
inflationary paradigm and the (background) dynamics of the inflaton field,
followed by a discussion of how inflation generates perturbations of the
FLRW metric and how these metric perturbations are decomposed into
scalar and tensor perturbations and how they evolve at first order in Sec-
tion 4.1.5. Next, Section 4.2 describes the mechanism by which gravi-
tational waves are nonlinearly generated from first-order scalar perturba-
tions. Lastly, Section 4.3 discusses the implications of these results for the
observations of gravitational waves and the production of primordial black
holes.

4.1 Inflation

4.1.1 Motivation and the connection to LISA

Inflation is a theoretical framework that describes a period of accelerated,
(nearly) exponential expansion in the earliest phase of the Universe. Ini-
tially proposed to explain the near homogeneity of the Universe on large
scales, inflation resolves issues such as the horizon, flatness, and monopole
problems [118, 119]. Moreover, it offers a mechanism for the generation
of primordial density fluctuations, which later evolve into the large-scale
structure of the Universe observed today [120].

The central idea is that one or multiple field(s), known as the inflaton(s),
drive this rapid expansion. Quantum fluctuations in the inflaton(s) are
imprinted into the spacetime metric and stretched to macroscopic scales by
the inflationary expansion, providing the seeds for the observed anisotropies
in the Cosmic Microwave Background (CMB) and the formation of galaxies
and other structures.

Inflation also predicts the generation of primordial gravitational waves,
though they have yet to be detected, which leads us to the main focus of
this chapter: While the dynamics of inflation and the amplitude of scalar
perturbations are very well constrained and understood at scales around
the CMB (k ∼ 0.05 Mpc−1) [121], the dynamics of the inflaton field at
smaller scales are yet to be meaningfully constrained. This is particularly
interesting, as enhancements at these scales can produce primordial black
holes (PBHs), which could at least be a fraction of the dark matter observed
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in the Universe today. LISA specifically would be sensitive to PBHs in
the asteroid-mass range (∼ 10−12 M⊙ or ∼ 1021 g), which is a yet almost
unconstrained part in the PBH mass distribution and thus could represent
a significant fraction of the dark matter present in the Universe.

To obtain a signal that is detectable by LISA, however, it is necessary to
consider models that either predict a significant enhancement of first-order
tensor perturbations or consider the second-order production of gravita-
tional waves from scalar perturbations. We focus on the latter.

Generating Scalar Induced Gravitational Waves (SIGWs) strong enough
to be detected by LISA requires either (i) a deviation from single field
slow-roll (SR) inflation, which–at scales observed by Planck–is the pre-
ferred and generally accepted model, or (ii) modifications in the standard
thermal history of the Universe, such as a period of early matter (possi-
bly PBH) domination as predicted by some beyond the standard model
scenarios.

It is important to stress that while the SR approximation is a very good
approximation at CMB scales, there are no fundamental reasons (apart
from some weak constraints arising from e.g., Big Bang Nucleosynthesis,
see Section 4.3.2) to assume that the inflaton potential is such that SR
occurs at all scales.

4.1.2 The Einstein- and Friedmann Equations in Cosmol-
ogy

To understand the dynamics of the Universe during and after inflation,
we start with the Einstein field equation, which describes the interaction
between matter and spacetime through gravity. In natural units (c = ℏ =
1), the Einstein equation is given as [122]

Gµν + Λgµν = 1
M2

pl
Tµν , (4.1)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor (Rµν is the Ricci tensor,

R is the Ricci scalar, and gµν is the metric), Λ is the cosmological constant,
and Mpl = 1/

√
8πG is the reduced Planck mass (G is Newton’s gravita-

tional constant). Tµν is the stress-energy tensor, which can be decomposed
into the energy density ρ and pressure p of a perfect fluid as

Tµν = (ρ+ p)uµuν + pgµν , (4.2)

where uµ is the four-velocity of the fluid. Assuming homogeneity and
isotropy implies no bulk velocity, which means that the 4-velocity is given
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by uµ = (−1, 0, 0, 0), and the energy-momentum tensor simplifies to

Tµν = diag(−ρ, p, p, p) . (4.3)

The next step is to introduce a suitable metric to describe a homogeneous
and isotropic expanding Universe. This metric is called the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric and reads (in spherical coor-
dinates) [122]

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2dΩ2
)
, (4.4)

where a(t) is the scale factor of the Universe, t is time, r is the comoving
radial coordinate, dΩ2 = dθ2 +sin2 θdϕ2 is the solid angle element, and k is
the curvature of the Universe. The scale factor a(t) describes the expansion
of the Universe and relates physical distances to comoving distances. We
use the (−1, 1, 1, 1) signature for the metric as is standard in cosmology.
As the Universe has no such thing as an absolute scale, a(t) needs to
be normalized to some arbitrary time, which is typically done by setting
a(t0) = 1 today.

Inserting this metric into the time component of the Einstein equation
(4.1), we obtain the Friedmann equation, which describes the dynamics of
an expanding Universe. It reads

H2 ≡
(
ȧ

a

)2
= 1

3M2
pl
ρ− k

a2 , (4.5)

where we have introduced the Hubble rate H. Furthermore, the spatial
component implies that

ρ̇ = −3H(ρ+ p) . (4.6)

This equation states that the dilution of the energy is proportional to the
expansion rate and depends on the relation between energy and pressure,
otherwise known as the equation of state (EOS). We define the equation of
state parameter w = p/ρ, which gives the following useful relations:

(ρ+ p) = ρ(1 + w) = 3(1 + w)H2M2
pl . (4.7)

The EOS is a well-known quantity for the different ingredients of the Uni-
verse:

• For a non-relativistic fluid (matter), the pressure is negligible (p = 0),
and therefore

ρ̇ = −3 ȧ
a
ρ ⇒ ρ ∝ a−3 . (4.8)
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• For a relativistic fluid (radiation), the pressure is p = 1
3ρ, implying

ρ̇ = −4 ȧ
a
ρ ⇒ ρ ∝ a−4 . (4.9)

• A cosmological constant is defined as energy that does not dilute.
This implies that ρ = const. and p = −ρ.

• The curvature term dilutes as a−2, as can be seen in Eq. (4.5).

This different scaling of each component motivates rewriting the Friedmann
equation in terms of the energy densities Ωr, ΩΛ, and Ωk of the different
components of the Universe:

H2

H2
0

=
(Ωm

a3 + Ωr

a4 + ΩΛ + Ωk

a2

)
, (4.10)

where H0 is the Hubble constant, i.e., the Hubble rate today, and a is the
scale factor at any given time. The energy densities are defined as:

Ωm = ρm

ρcrit
, Ωr = ρr

ρcrit
, ΩΛ = ρΛ

ρcrit
, Ωk = − k

H2
0a

2
0
, (4.11)

where ρm, ρr, and ρΛ are the energy densities of matter, radiation, and
the cosmological constant, respectively, and ρcrit = 3H2

0/8πG is the critical
density of the Universe.

Typically, the Universe is assumed to be spatially flat (k = 0)1, which we
also assume in the following, and the energy densities are normalized such
that Ωm + Ωr + ΩΛ = 1. Note also that this equation implicitly includes
gravitational waves, which contribute to the radiation density Ωr.

Looking at the structure of Eqs. (4.5) and (4.6), it is easy to see that

ȧ =
√

1
3M2

pl
ρa2 and ä = 1

6M2
pl

(ρ+ 3p)a , (4.12)

This is also a good place to introduce an alternative choice for the time
coordinate. Instead of using the cosmic time (or proper time) t, which is
defined as the time that a clock at rest in the Universe would measure, we
can define the conformal time η as

dη = dt
a(t) . (4.13)

Using this time has the advantage that the relation between the conformal
time and the physical distances dx remains the same while the Universe

1Flatness is compatible with observations and is in fact a prediction of inflation, as
any initial curvature is quickly diluted by the rapid expansion.
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expands, meaning that we can define comoving quantities that are con-
stant in time. We frequently use this time coordinate in the following
sections.

Using conformal time, the FLRW metric Eq. (4.4) becomes

ds2 = a2(η)
[
−dη2 + dr2

1 − kr2 + r2dΩ2
]
, (4.14)

and the Friedmann equation becomes

H2 = 1
3M2

pl
ρ − k

a2 , (4.15)

where we have introduced the conformal Hubble rate H = a′/a = aH. To
keep the notation consistent, in the following, primes denote derivatives
with respect to conformal time, and dots denote derivatives with respect
to cosmic time.

To achieve accelerated expansion, Eq. (4.12) tells us that we need a neg-
ative pressure, i.e., ρ + 3p < 0. Simply assuming that the Universe is
dominated by a cosmological constant, we can see that the Universe ex-
pands exponentially, i.e., a(t) ∝ eHt, where H =

√
Λ/3, called a de Sitter

Universe. Unfortunately, this would be too easy, as we would get a Uni-
verse that is exponentially expanding forever, meaning that modes that
exit the Hubble horizon would never re-enter. This is incompatible with
the expansion history we need to form galaxies and explain the Universe
as we observe it today.

An elegant solution to this problem is inflation, which achieves a quasi-
de Sitter expansion by introducing one or multiple scalar fields that drive
the expansion by slowly rolling down a potential, eventually decaying into
standard model particles through a process called reheating. This model
is discussed in detail in Sections 4.1.3 and 4.1.4.

After inflation, the standard theory suggests that initially all particles are
ultra-relativistic, leading to a period of radiation domination, followed by
matter domination, and finally, today, we are in a period of dark energy
domination. The implications of this on the generation of gravitational
waves is discussed in Section 4.2.

4.1.3 Single field inflation

Although there exists a plethora of proposed models of inflation–which
are briefly discussed in Section 4.1.4–the simplest and most widely stud-
ied model assumes that a single scalar field called the inflaton drives the
expansion.
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If we assume a scalar field with a canonical kinetic term, the Lagrangian
for the inflaton ϕ reads (in the Einstein frame for convenience)

L = 1
2∂µϕ∂

µϕ− V (ϕ) , (4.16)

where V (ϕ) is the potential energy function of the inflaton field. This is
equivalent to the action

S = −
ˆ

d4x
√

|g|
[

1
2M2

pl
R + 1

2∂µϕ∂
νϕ− V (ϕ)

]
, (4.17)

where R is the Ricci scalar, originating from the Lagrangian of gravitation,
and we assume minimal coupling to gravity.

Varying the action with respect to the metric gµν gives us back the Einstein
equation, where the inflaton field contributes to the energy momentum
tensor

Tµν = ∂µϕ∂νϕ− gµν

(1
2∂αϕ∂

αϕ− V (ϕ)
)
, (4.18)

and varying with respect to the inflaton field gives us the Klein-Gordon
equation

1√
|g|∂µ

[√
|g|∂νϕ

]
− dV

dϕ
= 0 . (4.19)

As we are only interested in the background evolution for now, we assume
the inflaton field to be homogeneous, i.e., ϕ = ϕ(t) and a flat FLRW metric
Eq. (4.4). This simplifies the stress energy tensor to Tµν = diag(−ρ, p, p, p)
with

ρ = 1
2 ϕ̇

2 + V (ϕ), p = 1
2 ϕ̇

2 − V (ϕ) . (4.20)

and the Klein-Gordon equation to

ϕ̈+ 3Hϕ̇+ V (ϕ),ϕ = 0 , (4.21)

where ϕ̇ is the time derivative of ϕ, and V (ϕ),ϕ = dV
dϕ is the derivative of

the potential V (ϕ) with respect to the inflaton field ϕ.

By injecting Eq. (4.20) into Eq. (4.5), we obtain an equation for the ex-
pansion of the Universe (we assume that only the inflaton injects energy
into the Universe during inflation):

G0
0 = 3H2 = 1

M2
pl

(1
2 ϕ̇

2 + V (ϕ)
)
, (4.22)

while the spatial part of the Einstein equationGi
i provides the relation

Gi
i = −2 ä

a
−H2 = 1

M2
pl

(1
2 ϕ̇

2 − V (ϕ)
)
. (4.23)
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Combining Eqs. (4.22) and (4.23), we obtain the useful relation

Ḣ = − ϕ̇2

2M2
pl
. (4.24)

For inflation to occur, the inflaton field must be slowly rolling down its
potential, i.e., the kinetic energy of the inflaton must be much smaller
than the potential energy

1
2 ϕ̇

2 ≪ V (ϕ) . (4.25)

Likewise, the potential must be flat enough to allow for a long period of
inflation, i.e.,

∣∣∣ϕ̈
∣∣∣ ≪ |V,ϕ| = 3H

∣∣∣ϕ̇
∣∣∣ . (4.26)

Using the Klein-Gordon and Friedmann equations, these conditions can be
written in terms of the Hubble rate and its derivatives as

−Ḣ ≪ 3H2 and |Ḧ| ≪ −6HḢ ≪ 18H3 . (4.27)

This motivates defining the slow-roll parameters ϵH and ηH as 2

ϵH = − Ḣ

H2 = (ϕ′)2

2M2
pl
, ηH = − Ḧ

2HḢ
= ϵH − 1

2(log ϵH)′ . (4.28)

We speak of slow-roll (SR) inflation when ϵH ≪ 1, |ηH | ≪ 1. Note that
the condition ρ + 3p < 0, which is necessary for accelerated expansion, is
equivalent to ϵH < 1 meaning that inflation ends when ϵH = 1.

In practice, when computing the dynamics of inflation, we need to solve
the Klein-Gordon Eq. (4.21) together with the Friedmann Eq. (4.22). This
is typically done numerically, but as the expansion happens nearly ex-
ponentially, the computation spans a large range of scales, which leads
to numerical issues. To avoid this, it makes sense to recast Eqs. (4.21)
and (4.22) in terms of the number of e-folds N defined as

N =
ˆ t

ti

H(t′)dt′ , (4.29)

where ti is some (arbitrary) initial time. We set t = 0 to the time of the
initial conditions. This is equivalent to defining dN = Hdt, which allows
us to write the Klein-Gordon equation as

ϕ,NN + ϕ,N

(
3 − (ϕ,N )2

2M2
pl

)
+ V,ϕ

H2 = 0 , (4.30)

2Note that the way of defining the slow-roll parameters is not unique, and different
conventions exist. This is both regarding whether they are defined in terms of the
Hubble rate or the potential and up to some numerical factors.
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where we used Eq. (4.24) and (),N denote derivatives with respect to efolds.
Likewise, the Friedmann equation becomes

3H2 +H,NH − V (ϕ)
M2

pl
= 0 . (4.31)

4.1.4 Alternative models of inflation

Inflationary models capable of generating detectable SIGWs in the LISA
band are not limited to single-field scenarios with ultra-slow roll (USR)
dynamics. A number of alternative mechanisms can lead to enhancements
in the scalar curvature power spectrum Pζ(k) (see Eq. (4.66) for the defini-
tion) at small scales and hence produce observable SIGWs at second order
in perturbation theory. These include multi-field models, particle pro-
duction during inflation, or non-attractor dynamics outside USR. A full
in-depth description is beyond the scope of this work, so we stick to briefly
mentioning a few classes of such models (see e.g., [123] for a review).

Multi-field inflationary models

In multi-field inflation, additional scalar fields can source curvature per-
turbations through entropic (isocurvature) modes, which can convert into
adiabatic fluctuations. This conversion can be highly efficient in the pres-
ence of sharp turns in field space or non-trivial kinetic couplings, leading
to localized peaks or broad enhancements in Pζ(k) [124].

A prominent subclass is hybrid inflation models, where inflation ends via
a tachyonic instability in an auxiliary field. Before this transition, the
waterfall field can remain light and dynamically subdominant, sourcing a
bump-like feature in Pζ(k) at small scales. Models of this kind typically
lead to quasi-lognormal spectra:

Pζ(k) ∼ As exp
[
− ln2(k/k⋆)

2∆2

]
, (4.32)

which in turn source SIGW signals, potentially within LISA sensitivity [125].

In scenarios with curved inflationary trajectories, transient entropic-to-
adiabatic conversion occurs during sudden field-space turns. These turns
induce oscillations in the scalar power spectrum superimposed on a peaked
envelope. The resulting SIGW signals inherit these features and are sensi-
tive to the duration and sharpness of the turn [126, 127, 128].

Particle production during inflation

Another mechanism is particle production sourced by coupling the infla-
ton (or a spectator axion-like field) to gauge fields, typically via a Chern-

52



Scalar-induced gravitational waves from inflation

Simons term ϕFF̃ . As the scalar field evolves, it induces a tachyonic
instability for one helicity of the gauge field, leading to exponential am-
plification. These amplified gauge quanta act as a source of scalar (and
tensor) fluctuations via inverse decay processes [129, 130].

The power spectrum in such cases acquires a blue tilt at small scales and
may contain a distinct bump. The amplitude and shape of the feature
depend on the axion velocity and coupling strength. These models often
yield strongly non-Gaussian curvature perturbations (see 4.2.2) and hence
the non-Gaussian contribution to SIGWs [131].

Non-attractor phases beyond USR

Although USR is the prototypical non-attractor phase, there exist other
classes of non-attractor dynamics capable of producing an enhancement
in Pζ . For instance, constant-roll solutions with ϕ̈/Hϕ̇ = β = const.
generalize USR and can sustain growing super-Hubble curvature pertur-
bations [132, 133]. The extent of enhancement and the slope of the power
spectrum after the peak are sensitive to the specific value of β and the
transition history back to slow-roll.

Another example is “transient non-attractor” evolution induced by a tem-
porary violation of the null energy condition or modifications of the kinetic
term. In k-inflation [134, 135] or G-inflation models [136, 137], a rapidly
evolving sound speed cs can lead to power spectrum features. If cs becomes
significantly less than unity at small scales, the curvature perturbation is
enhanced by a factor ∼ 1/c2

s, and the resulting SIGWs are boosted accord-
ingly.

In Paper IV we discuss the empirical signatures of these models in the
context of LISA observations and the prospects for detecting the corre-
sponding SIGW signals.

4.1.5 Scalar and Tensor perturbations at first order

In Section 4.1.3, we have established the background dynamics of inflation
(we assumed a flat FLRW metric, which by definition is homogeneous and
isotropic). However, we know that the Universe is not perfectly homo-
geneous and isotropic, as observable from the CMB and the large-scale
structure of the Universe. These inhomogeneities are generated during
inflation and are imprinted into the spacetime metric as perturbations.
They naturally arise from inflation as quantum fluctuations in the infla-
ton field or of the relevant degrees of freedom in the case of multi-field
inflation.
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To allow for such perturbations, we perturb both the FLRW metric and
the inflaton field at linear order:

gµν(t,x) = gµν(t) + δgµν(t,x), ϕ(t,x) = ϕ(t) + δϕ(t,x) . (4.33)

where the overline denotes the background quantities. Note that the per-
turbed metric has 10 degrees of freedom, but we can remove 4 by gauge
transformations, leaving 6 degrees of freedom. These can be decomposed
into 2 scalar, 2 vector, and 2 tensor perturbations. The vector perturba-
tions only yield decaying solutions, so they can be neglected safely.

This leaves the two scalar perturbations, which can be written in terms of
the Bardeen potentials Φ and Ψ, and the tensor perturbations, which are
described by the tensor modes hij . Choosing a gauge where the scalar per-
turbations are diagonal, called the longitudinal (or conformal Newtonian)
gauge, the perturbed FLRW metric reads [122]

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1 − 2Ψ)δijdxidxj

]
+ hijdxidxj , (4.34)

where dt = a dη is the conformal time running from −∞ in the asymptotic
past to 0 in the asymptotic future, and the two degrees of freedom of the
tensor perturbations are encoded in the tensor modes hij = h1e

1
ij + h2e

2
ij ,

where e1
ij and e2

ij are the two polarization tensors. We choose
∑

ijλ e
λ
ije

λ′
ij =

1. At first order in perturbation theory, the scalar and tensor perturbations
evolve independently and can therefore be treated separately. This also
implies that the perturbations in the inflaton field affect only the scalar
perturbations directly.

Lastly, in order to effectively find solutions to the equations of motion of
the scalar and tensor modes, we need to discuss how to quantize these
fields 3. For this, recall the quantum harmonic oscillator in Minkowski
space. Momentarily introducing the free, massless scalar field χ with the
Lagrangian

L = 1
2∂µχ∂

µχ , (4.35)

one can write down the equation of motion (EOM) for the Fourier modes
χk as

χ̈k + k2χk = 0 , (4.36)

and the Hamiltonian as

H =
ˆ

d3k
(
χ̇∗

kχ̇k + k2χ∗
kχk

)
. (4.37)

3Quantization is needed here, as deep in the past, quantum fluctuations generate
the perturbations that classicalize only after Hubble crossing.
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Each Fourier mode is a harmonic oscillator, and in the fundamental state,
the wave functional of each mode is a Gaussian:

Ψ0[χk] ∝ exp
(

−1
2k|χk|2

)
. (4.38)

This means that the expectation value of the field χk is zero, and its
variance is

⟨χ2
k⟩ = 1

2k . (4.39)

Assuming that deep in the Hubble horizon (i.e., k ≫ aH) the modes are
in their ground state and the metric is approximately Minkowski, we can
use this result to match our solutions of the quantum harmonic oscillator
to the solutions of the equations of motion of the perturbations. This is
done by requiring that in the sub-horizon limit, the variance of the field is
given by Eq. (4.39) and the solution of the mode is of the form of a plane
wave, called Bunch-Davies vacuum [138]

χk = 1√
2k
e−ikt . (4.40)

Tensor perturbations

We first have a brief look at the tensor perturbations, as they are easier
to understand and compute. Although the focus of this work lies on GWs
induced by scalar perturbations, it is important to check how tensor per-
turbations evolve at first order, as we need to be able to predict how they
change (or do not change) when introducing an ultra-slow-roll phase.

The action of the tensor perturbations only contains the gravitational part
of Eq. (4.17) and no direct coupling to the inflaton field. The Lagrangian
describing the tensor perturbations is given by [122]

Ltensors =
a4M2

pl
8

[
∂µh1∂

µh1 + ∂µh2∂
µh2 − (∇h1)2 − (∇h2)2

]
, (4.41)

where we are discarding all terms O(Φ2),O(Ψ2),O(δϕ2) but we keep terms
that are quadratic in hij (there are no linear terms in hij). The implications
of keeping higher order terms in Φ,Ψ, δϕ are discussed in Section 4.2.

The divergence term ∇hk can be gauged away by switching to the transverse-
traceless (TT) gauge (∂ih

ij = 0 and hi
i = 0). Furthermore, the two

polarizations share the same EOM. We therefore concentrate on a single
mode hλ (the λ is to emphasize that we are in real space as opposed to
Fourier space). In addition, we introduce the comoving, rescaled tensor
mode vλ = ahλMpl/2, which simplifies the Lagrangian to

Ltensors = 1
2

[(
v′

λ − a′

a
vλ

)2
− (∂ivλ)2

]
. (4.42)
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We then introduce the Fourier modes vk, which obey the equation of mo-
tion

v′′
k +

(
k2 − a′′

a

)
vk = 0 . (4.43)

Let us consider exact de Sitter inflation to see how the tensor modes evolve.
In this case, the scale factor is given by a(t) = a0e

Ht and therefore η =
−1/(aH) with H = const, and a′′/a = 2/η2. The EOM for the tensor
modes becomes

v′′
k +

(
k2 − 2

η2

)
vk = 0 . (4.44)

The solution to this equation is well known and can be expressed by the
Hankel functions of the first and second kind H

(1)
ν (−kη) and H

(2)
ν (−kη)

with ν = 3/2 and the general solution is a linear combination of these two
solutions vk = AkH

(1)
3/2(−kη) + BkH

(2)
3/2(−kη) but by choosing the initial

conditions such that the mode is in its ground state in the asymptotic past,
also known as Bunch-Davies initial conditions see Eq. (4.40), we find that
Bk = 0.

The remaining term can be written down in closed form as

AkH
(1)
3/2 = Ak

√
2
πkη

e−ikη

(
1 − i

kη

)
. (4.45)

and by matching to the mode function for k ≫ aH (see Eq. (4.40)), one
arrives at

vk = 1√
2k

(
1 − i

kη

)
e−ikη . (4.46)

There are three important things to note about this solution:

1. In the deep sub-Hubble limit, the mode function is a plane wave, as
expected.

2. In the super-Hubble limit (k ≪ aH), the mode function is constant,
meaning that the tensor modes are frozen in this regime.

3. As long as inflation does not significantly deviate from de Sitter, the
tensor modes are nearly unaffected by the dynamics of the inflaton
field.

The last point is crucial, as it ensures that the tensor modes are only
marginally affected by the ultra-slow-roll phase. This is in stark contrast
to the scalar modes, which are discussed below.
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The last quantity that is useful to compute is the power spectrum of the
tensor modes. This is defined as 4

Ph(k) ≡ k3

2π2

〈∑

ij

|hij k|2
〉
. (4.47)

which, in the case of de Sitter inflation, is given by

Ph(k) = 2
π2

H2

M2
pl
. (4.48)

where H is the Hubble rate during inflation. This result is independent of
the wavenumber k and is a direct consequence of the scale invariance of
the de Sitter space.

Scalar perturbations

Compared to the tensor perturbations, the scalar perturbations are some-
what trickier to compute as they are directly coupled to the inflaton
field.

We recall the three degrees of freedom of the scalar perturbations, the
two Bardeen potentials Φ and Ψ, and the inflaton field perturbation δϕ.
In the longitudinal gauge, the perturbed Einstein equation provides the
relation

δGj
i = ∂i∂

j(Φ − Ψ) = 1
M2

pl
∂iδϕ∂

jδϕ (4.49)

for i ̸= j. As the right-hand side vanishes at first order in perturba-
tion theory, in the absence of anisotropic stress, this means that Φ = Ψ.
We are left with only Φ and δϕ, which evolve according to the Einstein
and Klein-Gordon equations. Skipping the lengthy but straightforward
derivation and going directly to Fourier space, the Klein-Gordon equation
reads [122]

δϕ′′
k + 2Hδϕ′

k + (k2 + a2V,ϕϕ)δϕk − 4ϕ′Φ′
k + 2a2V,ϕΦk = 0 , (4.50)

where H = aH is the conformal Hubble parameter. The Einstein equation
yields the equation of motion for the Bardeen potential Φ. The time (0, 0)
component is given by

k2Φk + 3H(Φ′
k + HΦk) = − 1

2M2
pl

(
ϕ

2Φ − ϕ
′
δϕk − a2V,ϕδϕk

)
. (4.51)

4The definition is not totally unique in literature. Some authors omit the factor of
2π2 in the denominator.
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The time-space (0, i) component gives rise to a momentum constraint

Φ′ + HΦ = − 1
2M2

pl
ϕ

′
δϕ , (4.52)

and the space-space (i, i) component (the off-diagonal terms vanish) yields

Φ′′
k + 3HΦ′

k +
(

2H′ + H2 + k2

2

)
Φk = 1

2M2
pl

(
ϕ

′
δϕ′

k − ϕ
′2Φk − a2V,ϕδϕk

)
.

(4.53)

Using any of the Einstein components (the Bianchi identities ensure self-
consistency), one can eliminate either δϕ or Φ from the equations, leaving
us with only one equation of motion. A more clever way is to introduce
the Mukhanov-Sasaki variable [139, 140]

ξk = a

(
Φk + ϕ

′

Hδϕk

)
, (4.54)

and

z = aϕ
′

H , (4.55)

which yields a very similar equation of motion to the one of the tensor
perturbations:

ξ′′
k +

(
k2 − z′′

z

)
ξk = 0 . (4.56)

By comparing this equation to Eq. (4.43) and Eq. (4.41), it becomes easy
to reverse-engineer the Lagrangian in terms of the Mukhanov-Sasaki vari-
able:

Lscalar = 1
2

[(
ξ′ − z′

z
ξ

)2
− (∂iξ)2

]
. (4.57)

We can make our lives even easier by directly choosing a favorable gauge
where Φ = 0 and all scalar perturbations are naturally encoded in the
perturbation of the inflaton field. This gauge is called the spatially flat
gauge, and the metric reads

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2∂iBdxidη + δijdxidxj

]
, (4.58)

where the new variables A and B have been introduced. With this metric,
the Klein-Gordon equation reads

δϕ′′
k + 2Hδϕ′

k + (k2 + a2V,ϕϕ)δϕk − ϕ
′(A′ + 3HA) + 2a2V,ϕA = 0 , (4.59)
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and the Einstein equations give the following equations of motion for A
and B:

3H(HA−B′) + k2B = −κ2

2
(
ϕ

′
δϕ′ + a2V ,ϕδϕ+ ϕ

′2
A
)
, (4.60)

HA−B′ = κ2

2 ϕ
′
δϕ . (4.61)

Introducing the much simpler Mukhanov-Sasaki variable vk = aδϕk, one
finds

v′′
k +

(
k2 − a′′

a
+ a2V ,ϕϕ

)
vk − aϕ

′(A′ + 3HA) + 2a3V ,ϕA = 0. (4.62)

which simplifies to the same Mukhanov-Sasaki equation as before:

v′′
k +

(
k2 − z′′

z

)
vk = 0 . (4.63)

As the quantity of interest for this work is the power spectrum of the scalar
perturbations, we define the comoving curvature perturbation ζ as

ζ = Φ + H
ϕ

′ δϕ . (4.64)

This means that at first order in perturbation theory

ζk = vk

z
. (4.65)

Solving the Mukhanov-Sasaki equation for the scalar perturbations then
follows the same logic as for the tensor perturbations. The details of how to
set the initial conditions and how to make this calculation computationally
efficient are explained in Paper IV.

Once the Mukhanov-Sasaki equation has been solved, the power spectrum
of the scalar perturbations can be computed analogously to the tensor
perturbations. The power spectrum is defined as

Pζ(k) = k3

2π2 |ζk|2 . (4.66)

Note, however, that it matters at which time we compute the power spec-
trum. Just after Hubble crossing, Pζ(k) remains conserved and does not
evolve. However, during and after reheating, the modes re-enter the hori-
zon, and the power spectrum evolves until linearity breaks down. Dis-
cussing the implications of this is beyond the scope of this work, as the
focus is on second-order tensors generated from scalar perturbations that
decouple long before non-linearities take over.

Let us now explicitly write down the solution to the Mukhanov-Sasaki
equation for a quasi-de Sitter, slow roll period of inflation. One uses the

59



Scalar-induced gravitational waves from inflation

same Ansatz as for the tensor perturbations, but now for the Mukhanov-
Sasaki variable vk instead of the metric perturbation directly. Going di-
rectly to the large wavelength limit, vk becomes

vk≪aH = i√
2kkη

= iaH√
2k3

. (4.67)

and it is possible to use the first slow-roll parameter ϵH to write z as

z = aϕ̇

H
=

√
2ϵHHMpl . (4.68)

This allows writing the power spectrum of the scalar perturbations as

Pζ(k) = H2

4π2(ϕ′)2 = H2

8π2M2
plϵH

. (4.69)

Notice that–unlike the tensor modes–the scalar perturbations are directly
affected by the dynamics of the inflaton field. In particular, Eq. (4.69)
implies that the scalar perturbations can be enhanced by decreasing the
velocity of the inflaton field ϕ′ (or equivalently decreasing the slope of the
potential V,ϕ). At the same time, this modification only marginally affects
the tensor perturbations. This is the key idea behind USR inflation.

Tensor-to-scalar ratio and spectral index

A useful quantity to define in the context of inflation is the tensor-to-scalar
ratio r. This is defined as the ratio of the power spectrum of the tensor
perturbations to the power spectrum of the scalar perturbations at horizon
crossing:

r = Ph(k)
Pζ(k) . (4.70)

For quasi-de Sitter inflation, this ratio is given by

r = 16ϵH . (4.71)

Additionally, assuming slow roll inflation, it is easy to compute the ampli-
tude and spectral tilt of the scalar perturbations. For this, one deviates
from scale invariance by introducing the spectral index ns, which changes
the power spectrum to

Pζ(k) = As

(
k

k∗

)ns−1
, (4.72)

where k∗ is some pivot scale, which is typically chosen to be around the
scale of the CMB (k∗ = 0.05 Mpc−1). At linear order in the slow-roll
parameters, the spectral index is given by

ns − 1 = −6ϵH + 2ηH . (4.73)
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The amplitude of the scalar perturbations is the scale-invariant power spec-
trum from Eq. (4.69)

As = H2

8π2M2
plϵH

, (4.74)

as shown above.

Currently, the CMB offers the most competitive bounds on the inflationary
parameters around the CMB pivot scale k∗ = 0.05 Mpc−1. The Planck
collaboration has measured the amplitude of the scalar perturbations to
be As = (2.10±0.03)×10−9, the scalar spectral index to be ns = 0.9649±
0.0042 [121, 141], while BICEP2/Keck offers the most competitive upper
bound on the tensor-to-scalar ratio r < 0.036 at 95% confidence level [142];
however, these constraints only exist in a narrow range of scales around
the pivot scale.

This result implies that the primary tensor modes are suppressed compared
to the scalar modes, and unlike the CMB, which offers a very sensitive and
precise measurement of the scalar perturbations, the tensor modes are
much harder to detect. They do leave an imprint in the B-modes of the
CMB (hence the upper bound), but direct detection with gravitational
wave detectors is still very far out of reach. Furthermore, we do not expect
to see a significant signal coming from primary tensor modes at scales
outside the CMB if inflation is driven by a single scalar field.

All of this motivates looking at gravitational waves generated at second
order from the scalar perturbations. These are not only a potential source
of primordial black holes but also a source of gravitational waves that could
be detected by future experiments.

4.2 Second-order production of gravitational waves

In the last section, we have seen that primordial tensor modes at first
order are suppressed compared to the scalar modes. However, the scalar
modes are directly coupled to the inflaton field and can be enhanced with-
out significantly changing the primary tensor modes. The question arises
whether the scalar modes can generate tensor modes at second order, which
are detectable by future experiments such as LISA.

4.2.1 Basic equations for second-order gravitational wa-
ves

Before we get into the details of second-order gravitational waves, we need
to quickly digress to explain the meaning of “order” when talking of second-
order scalar-induced gravitational waves.
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The perturbed FLRW metric in the longitudinal gauge was established in
Eq. (4.33), and we saw that at leading order in perturbations, the scalars
and tensors evolve separately and according to the Lagrangians Eqs. (4.42)
and (4.57). To arrive at these equations, the metric was perturbed to linear
order in scalar perturbations, introducing the Bardeen potentials Φ and Ψ.
The equations of motion were computed by only keeping linear terms in
Φ,Ψ, and δϕ.

Going higher in the order of perturbation theory, (hij = h
(1)
ij + 1

2h
(2)
ij + . . . ),

the source for h gets terms that are quadratic in the (first order) scalar,
vector, and tensor perturbations, which motivates studying the effects of
these quadratic source terms in Φ,Ψ, and δϕ.

To find the equation of motion of the tensor perturbations at second order
in Φ,Ψ (dropping the explicit dependence on δϕ for now), it is instruc-
tive to start from the perturbed metric in the longitudinal gauge from
Section 4.1.5.

Deriving the equation of motion is a very cumbersome task, and repeating
it is beyond the scope of this work (for a full derivation, see e.g., [143]),
but it makes sense to give an outline of the procedure to understand the
terms appearing. We follow the notation and reasoning of [144].

We have already seen the first-order (linear) equation of motion for the
scalar perturbations Eq. (4.56), obtained by perturbing the Einstein equa-
tion to first order

G
(1)i

j = 1
M2

pl
T

(1)i
j . (4.75)

while at quadratic order we get the independently evolving tensor pertur-
bations (see Eq. (4.43)).

We can now go to second order in perturbations by expanding the per-
turbed FLRW metric to second order (denoting the order i with ()(i)):

ds2 = a2(η)
[

− (1 + 2Φ(1) + 2Φ(2))dη2 + 2V (2)
i dηdxi

+
[
(1 − 2Ψ(1) − 2Ψ(2))δij + 1

2h
(2)
ij

]
dxidxj

]
, (4.76)

where V (2)
i is the vector perturbation at second order, and we are neglect-

ing first-order vector and tensor perturbations. The Einstein equation at
second order reads

G
(2)i

j = 1
M2

pl
T

(2)i
j . (4.77)
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We ignore second-order terms O(Φ(2),Ψ(2), V (2)) (They are eliminated by
the projection tensor defined below in Eq. (4.83)) but keep the terms in
h

(2)
ij , which we call hij from now on. Furthermore, going back to our

previous notation of Φ ≡ Φ(1),Ψ ≡ Ψ(1), we can write the Einstein tensor
at second order as

G
(2)i

j(O(Φ,Ψ, h)) = a−2
[1

4
(
(hi

j)′′ + 2H(hi
j)′ + ∇2hi

j

)
+

− 2Φ∂i∂jΦ − 2Ψ∂i∂jΦ + 4Ψ∂i∂jΨ + ∂iΦ∂jΦ+

− ∂iΦ∂jΨ − ∂iΨ∂jΦ + 3∂iΨ∂jΨ + δi
j(diagonal terms)

]
, (4.78)

which, using the first order relation Φ = Ψ, simplifies to

G
(2)i

j(O(Φ, h)) = a−2
[1

4
(
(hi

j)′′ + 2H(hi
j)′ + ∇2hi

j

)
+

+ 4Φ∂i∂jΦ + 2∂iΦ∂jΦ + δi
j(diagonal terms)

]
. (4.79)

Likewise, the energy-momentum tensor at second order reads

T
(2)i

j(O(Φ)) = (ρ+ p)vivj + δpΠi
j , (4.80)

where v, Π, and δp are the velocity, anisotropic stress, and pressure per-
turbations at first order, respectively. Neglecting anisotropic stress implies
Π = 0, and the velocity perturbation is given by

vi = −
2M2

pl
a2(ρ+ p)∂i (Φ′ + HΦ) , (4.81)

which implies that

T
(2)i

j(O(Φ)) =
M2

pl
a2

4
3(w + 1)H2∂

i (Φ′ + HΦ) ∂j (Φ′ + HΦ) , (4.82)

where we have used the background EOS from Eq. (4.7). If one chooses
to look at the GWs in the TT gauge, one can define a projection tensor
T lm

ij , which acts on the spatial part of the Einstein equation and selects
the transverse-traceless part of the tensor perturbations

T lm
ij G

(2)i
j = 1

M2
pl

T lm
ij T

(2)
lm . (4.83)

Putting Eq. (4.79) and Eq. (4.82) together, one finds the equation of motion
for the second-order tensor perturbations:

h′′
ij(η,x) + 2Hh′

ij(η,x) − ∇2hij(η,x) = −4T lm
ij Slm(η,x) , (4.84)

where there is a source term Sij on the right that is a quadratic function
of the first order-scalar perturbations

Sij(η,x) = 4Φ∂i∂jΦ + 2∂iΦ∂jΦ − 4
3(w + 1)∂i

(Φ′

H + Φ
)
∂j

(Φ′

H + Φ
)
.

(4.85)
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4.2.2 Solving the equations of motion

Inspecting Eq. (4.84), we see that the EOM is of the same type as the one
for the tensor perturbations at first order, with the addition of the source
term Sij . As before, it is therefore useful to introduce the Fourier modes
hk:

hij(η,x) =
ˆ d3k

(2π)3 e
ik·x[eij +(k)hk +(η) + eij ×(k)hk ×(η)] , (4.86)

where eij +,× are the polarization tensors for the + and × modes, respec-
tively. As the polarizations have the same EOM, it is sufficient to consider
either, and denote it with the subscript s. The projected source term
defines the Fourier-transformed quantity analogously

T lm
ij Slm s =

ˆ d3k

(2π)3 eij s(k)Ss(η,k) . (4.87)

This turns Eq. (4.84) into

h′′
k(η,k) + 2Hh′

k(η,k) + k2hk(η,k) = 4Ss(η,k) . (4.88)

The source term Ss is constructed from the first-order scalar perturbation
and its derivative and reads

Ss(η,k) =
ˆ d3p

(2π)3 elm sp
lpm 1

3(1 + w)×

×
[
2(5w + 3)ΦpΦk−p + 4

H
(
ΦpΦ′

k−p + Φ′
pΦk−p

)
+ 4

H2 Φ′
pΦ′

k−p

]
,

(4.89)

where we switched to spherical coordinates (p, θ, ϕ) and aligned the axes
such that they form a basis (e+, e×, ez) with ez pointing in the direction of
k. This equation can be compactified by introducing the transfer function
T (η, k), which encapsulates the time evolution of Φ, converging to 1 in the
asymptotic past, and which relates the time evolution of comoving scalar
perturbations to the Bardeen potential via

Φ(η, k) = 3 + 3w
5 + 3wT (η, k)ζ(k) . (4.90)

Defining the function f(|k −p|, p, η), which absorbs the transfer functions,
and Qs(k,p) = elm sp

lpm, which absorbs the polarization tensor, allows
us to re-write the source term in terms of the comoving scalar perturba-
tions

Ss(η,k) =
ˆ d3p

(2π)3Qs(k,p)f(|k − p|, p, η)ζ(p)ζ(k − p) . (4.91)
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We see that the scalar perturbations enter the source term at quadratic
order, just as expected. Furthermore, f is a function of T, T ′ and H and
is given by

f(|k − p|, p, η) = 3(1 + w)
(5w + 3)2

[
2(5w + 3)T (p, η)T (|k − p|, η)+

+ 4
H2T

′(p, η)T ′(|k − p|, η) + 4
H

(
T (p, η)T ′(|k − p|, η)+

+ T ′(p, η)T (|k − p|, η)
)]

. (4.92)

The function f encapsulates the time evolution of the scalar perturbations
and therefore encodes the equation of state that the second-order gravita-
tional waves see as they re-enter the Hubble sphere. The implications of
this are discussed in Paper IV.

The solution to the Fourier-transformed inhomogeneous equation (4.88) is
most easily found by using the Green’s function method. The goal is to
find the Green’s function G(η, η̄) solving the homogeneous equation

G′′(η, η̄) +
(
k2 − a′′

a

)
G(η, η̄) = δ(η − η̄) , (4.93)

with the boundary conditions G(η, η) = 0 and G′(η, η) = 1. The Green’s
function is well known and, in the general case, yields

Gk(η, η̄) = k · ηη̄[jν(kη̄)yν(kη) − jν(kη)yν(kη̄)] , (4.94)

where jν and yν are the spherical Bessel functions of the first and second
kind, respectively, ν = 3(1 − w)/(2 + 6w), and k = |k|. The solution to
the inhomogeneous equation can be written as

hs(k, η) =
ˆ η

ηi

dη̄ Gk(η, η̄)a(η̄)
a(η)Ss(η̄) , (4.95)

where ηi is the time of emission.

Like for the first-order tensor modes, the energy density of GWs is re-
lated to the amplitude of the tensor perturbations via the two-point func-
tion

⟨hij(k, η)hij(k̄, η)⟩ = (2π)3δ(3)(k + k̄)2π2

k3 Ph(k, η) , (4.96)

which explicitly written out yields

⟨hij(k, η)hij(k̄, η)⟩ = 16
ˆ d3p1

(2π)3
d3p2
(2π)3Qs1(k1,p1)Qs2(k2,p2)×

×f(|k1 − p1|, p1, η)f(|k2 − p2|, p2, η)⟨ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)⟩ .
(4.97)
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The last term is the four-point function of the scalar perturbations ζ, which
can be decomposed into disconnected (products of two-point functions) and
connected parts. In the Gaussian case, the connected parts vanish, and the
power spectrum of the tensor perturbations can be expressed as a function
of the power spectrum of the scalar perturbations Pζ . If the connected
parts are taken into account as well, there is an additional term called
the trispectrum [145, 146, 147]. For most inflationary models, this part is
subdominant with respect to the disconnected part. The implications of
including this part are discussed in Paper IV.

To simplify the equations, it makes sense to introduce the interaction kernel
I(|k − p, p, η), which absorbs the transfer functions and the polarization
tensor

I(|k − p, p, η) =
ˆ η

ηi

dη̄ Gk(η, η̄)a(η̄)
a(η)f(|k − p|, p, η̄) , (4.98)

and the dimensionless momentum variables

u = |k − p|
k

, v = p

k
. (4.99)

The power spectrum of the tensor perturbations can then be written as

Ph(k, η) = 4
ˆ ∞

0
dv
ˆ 1+v

|1−v|
du
(

4v2 − (1 + v2 − u2)2

4vu

)2

×

× I2(v, u, k, η)Pζ(kv)Pζ(ku) , (4.100)

where the overline denotes the time average over multiple oscillations. The
need for this comes from the definition of GW energy density. Computing
this double integral efficiently enough to be able to infer the parameters
governing Pζ is one of the main objectives of Paper IV.

Once the power spectrum of the tensor perturbations is known, it is easy to
compute the fractional energy density per logarithmic wavenumber interval
ΩGW at some time after emission ηf :

ΩGW(k, ηf ) = ρGW(k, ηf )
ρc(ηf ) = 1

24

(
k

H(ηf )

)2

Ph(k, ηf ) , (4.101)

where ρc is the critical energy density of the Universe.

As GWs are massless they decouple early and then redshift as radiation.
The fractional energy density today is given by accounting for entropy
injections as particles become non-relativistic:

ΩGW(k)h2 = Ωr,0h
2 g∗(ηf )

g0∗

(
g0

∗,s

g∗,s(ηf )

)4/3

ΩGW(k, ηf )

= cg(ηf )
24 Ωr,0h

2
(

k

H(ηf )

)2

Ph(k, ηf ) , (4.102)
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where g∗ and g∗,s are the effective number of relativistic degrees of free-
dom in energy and entropy, respectively. The subscript 0 denotes the
value today. Ωr,0 is the fractional energy density of radiation today, and
h = H0/100 km s−1 Mpc−1 is the reduced Hubble constant that we are us-
ing due to the large uncertainty (and tension) in the value of H0. The
radiation density today has been measured very accurately by Planck and
is Ωr,0h

2 = 4.2×10−5 assuming massless neutrinos [141] and cg(ηf ) ≃ 0.39
for ηf corresponding to signals in LISA assuming standard model degrees
of freedom [122].

4.2.3 Effect of re-entry during different cosmological eras

The production of second-order gravitational waves depends on when the
scalar perturbations re-enter the horizon. There are two key scenarios to
consider: re-entry during the radiation-dominated era and re-entry during
an early matter-dominated era.

Radiation-dominated Universe In the radiation-dominated (RD) Uni-
verse, the Green’s function solution for the gravitational wave (GW) equa-
tion is [148]

kGk(η, η̄) = xx̄ [j0(x)y0(x̄) − j0(x̄)y0(x)]
= sin(x− x̄) , (4.103)

where x = kη and x̄ = kη̄. The solution for the gravitational potential Φ
is given by:

Φ(x) = 9
x2

(
sin(x/

√
3)

x/
√

3
− cos(x/

√
3)
)
. (4.104)

This potential decays as x−2 at large x. The factor x/
√

3 corresponds to
the sound horizon in the RD era.

The source function fRD in the RD era is derived using the gravitational
potential Φ and its derivatives:

fRD(v, u, x) = 12
u3v3x6

[
18uvx2 cos ux√

3
cos vx√

3

+
(
54 − 6(u2 + v2)x2 + u2v2x4

)
sin ux√

3
sin vx√

3
+ 2

√
3ux(v2x2 − 9) cos ux√

3
sin vx√

3

+ 2
√

3vx(u2x2 − 9) sin ux√
3

cos vx√
3

]
, (4.105)

67



Scalar-induced gravitational waves from inflation

which is equal to 4/3 at x = 0 and decays like ∼ 1/(uvx2) at large x. Using
the Green’s function, the integral IRD(v, u, x) is given by:

IRD(v, u, x) =
ˆ x

0
dx̄ x̄
x

sin(x− x̄)fRD(v, u, x̄). (4.106)

To evaluate this integral, one uses trigonometric identities and integration
by parts. After simplification, the result is:

IRD(v, u, x) = 3
4u3v3x

[
− 4
x3

(
uv(u2 + v2 − 3)x3 sin x− 6uvx2 cos ux√

3 cos vx√
3

+6
√

3ux cos ux√
3 sin vx√

3 + 6
√

3vx sin ux√
3 cos vx√

3

−3(6 + (u2 + v2 − 3)x2) sin ux√
3 sin vx√

3

)

+(u2 + v2 − 3)2
(

sin x
(
Ci
((

1 − v−u√
3

)
x
)

+ Ci
((

1 + v−u√
3

)
x
)

−Ci
(∣∣∣1 − v+u√

3

∣∣∣x
)

− Ci
((

1 + v+u√
3

)
x
)

+ log
∣∣∣3−(u+v)2

3−(u−v)2

∣∣∣
)

+ cosx
(

− Si
((

1 − v−u√
3

)
x
)

− Si
((

1 + v−u√
3

)
x
)

+Si
((

1 − v+u√
3

)
x
)

+ Si
((

1 + v+u√
3

)
x
) ))]

,

(4.107)

where Si(x) and Ci(x) are the sine and cosine integral functions, respec-
tively:

Si(x) =
ˆ x

0

sin x̄
x̄

dx̄, Ci(x) = −
ˆ ∞

x

cos x̄
x̄

dx̄. (4.108)

At late times (x → ∞), IRD simplifies to:

IRD(v, u, x → ∞) ≈ 3(u2 + v2 − 3)
4u3v3x

[
sin x

(
− 4uv + (u2 + v2 − 3)×

× log
∣∣∣∣∣
3 − (u+ v)2

3 − (u− v)2

∣∣∣∣∣

)
− π(u2 + v2 − 3)Θ(v + u−

√
3) cosx

]
. (4.109)

The oscillation-averaged value of I2
RD is given by:

I2
RD(v, u, x → ∞) = 1

2

(
3(u2 + v2 − 3)

4u3v3x

)2 [(
− 4uv + (u2 + v2 − 3)×

× log
∣∣∣∣∣
3 − (u+ v)2

3 − (u− v)2

∣∣∣∣∣

)2
+ π2(u2 + v2 − 3)2 Θ(v + u−

√
3)
]
. (4.110)
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Matter domination In the matter-dominated (MD) era, the Green’s
function solution for the gravitational wave (GW) equation is [148]

kGk(η, η̄) = xx̄ [j1(x)y1(x̄) − j1(x̄)y1(x)]

= 1
xx̄

[(1 + xx̄) sin(x− x̄) − (x− x̄) cos(x− x̄)] (4.111)

and the Bardeen potential is simply constant

Φ(x) = 1 , (4.112)

which, after some manipulation, yields

I2
MD(v, u, x → ∞) = 18

25 (4.113)

Note that modes within the LISA band can only reenter during matter
domination if it precedes radiation domination, as could be the case if
initially the energy density is dominated by some pressureless quantity.
This could, e.g., be the case if (a) at the end of inflation the inflaton
becomes massive and slow (H ≪ m), behaving like a pressureless fluid
before reheating, or (b) some weakly coupled heavy particles dominate the
early Universe in an extension of the standard model [149]. Furthermore,
it is clear from Eq. (4.101) that if Ph does not drop faster than 1/k2 at
large k, the energy density of the GWs diverges. Interestingly, the MD
to RD transition produces an enhancement of the GWs if it happens fast
enough. The details are discussed in Paper IV.

4.3 Constraints on gravitational waves from inflation

Inflationary models predict a stochastic background of GWs spanning a
wide range of frequencies, depending on the scale of inflation and the nature
of the transition to the post-inflationary Universe. Various observational
probes place stringent constraints on the amplitude and energy density
of these GWs. The primary constraints arise from the CMB B-mode po-
larization, bounds on the effective number of extra neutrino species from
the CMB temperature anisotropies and Big Bang nucleosynthesis, and pri-
mordial black holes. Further constraints are put by direct GW detection
experiments. This section discusses these constraints in detail.

4.3.1 Cosmic Microwave Background

As already discussed in Section 4.1.5, the CMB puts strong bounds on the
first-order scalar and tensor perturbations at a scale of ∼ 0.05 Mpc−1 ∼
5 · 10−16 s−1. The scalar perturbations enter the CMB as temperature
anisotropies, while the tensor modes enter as B-mode polarization. Planck
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tightly constrains the amplitude of the scalar perturbations to be As =
(2.10 ± 0.03) × 10−9 [141]. The tensor-to-scalar ratio r is constrained to be
less than 0.036 at 95% confidence level by BICEP2/Keck [142]. This yields
an upper bound on first-order tensor perturbations and an estimate of the
second-order contribution at this scale. Reminding ourselves of Eq. (4.102),
the first-order tensor contribution is given by

Ω(1)
GW(k)h2 = cg(ηf )

24 Ωr,0h
2 · Pζ(k)r ≲ 10−16 , (4.114)

whereas the second-order contribution reads [148]

Ω(2)
GW(k)h2 = cg(ηf )Ωr,0h

2Q(ns) · A2
s

(
k

k∗

)2ns−2
∼ 10−22 , (4.115)

where Q(ns) = 0.8149 for the Planck value of ns = 0.9655. The second-
order contribution is suppressed by a factor of ∼ 106 compared to the
first order contribution and is therefore entirely irrelevant if there is no en-
hancement in Pζ . Furthermore, if we assume a pure power law spectrum
as shown in Fig. 4.1, both first- and second-order contributions remain
well outside the sensitivity of Pulsar Timing Arrays, space-based observa-
tories such as LISA, as well as current and next-generation ground-based
observatories. On the other hand, if there is an enhancement of the scalar
perturbations at small scales (i.e., due to a USR phase), the second-order
contribution can generate signals that are strong enough to be detected by
either of those observatories. The first-order tensor perturbations remain
virtually unphased by such an enhancement.

Figure 4.1 indicates the BICEP2/Keck constraint on the tensor-to-scalar
ratio r (gray arrow) and shows the sensitivity curve for the planned Lite-
BIRD space mission [150] that will offer better measurements of the B-
mode polarization, thus providing tighter bounds on r.

4.3.2 Effective number of neutrino species

As discussed previously, GWs are relativistic species and therefore con-
tribute to the energy density of the Universe as radiation. This makes
processes that depend on the background evolution of the Universe sensi-
tive to the abundance of GWs after their production. The energy density
of radiation in the Universe is given by

ρr = π2

30g∗(T )T 4, (4.116)

where g∗ is the effective number of relativistic degrees of freedom. Pho-
tons contribute g∗,γ = 2 and neutrinos (together with their antiparticles)
contribute g∗,η = 7/8 · 2Nν to g∗, where Nν = 3 is the number of neutrino
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species in the standard model. Therefore, if one treats the GW radiation
like an addition of ∆Nν to the number of neutrino species5, the added
density ∆ρr is given by [151]

∆ρr = π2

30
7
4∆NνT

4 . (4.117)

Assuming that only GWs contribute to extra radiation, this means that
(
ρGW
ργ

)

T ∼MeV
≤ 7

8∆Nν , (4.118)

where ρGW is the energy density of the GWs and ργ is the energy density
of the photons. The temperature of T ∼ MeV stems from the fact that
it is easier to define the quantity before neutrinos decouple. Evolving
Eq. (4.118) to today, one arrives at

h2
(
ρGW
ρc

)

0
≤ h2Ωγ,0

(
gs(T0)

gs(T ∼ MeV)

)4/3 7
8∆Nν = 5.6 · 10−6∆Nν ,

(4.119)

and
(
ρGW
ρc

)

0
=
ˆ ∞

fH

df
f
h2ΩGW(f) , (4.120)

where fH is the frequency corresponding to the Hubble horizon at the time
t where the imprint of GWs is happening fH = (Ht/2π)(at/a0), as GWs
can only contribute to radiation if their wavelength is within the Hubble
sphere.

∆Nν is best constrained by two measurements:

• The abundance of light elements produced during Big Bang Nucle-
osynthesis (BBN) happening at TBBN ∼ 0.1 MeV puts a constraint
of (h2ρGW/ρc)0 < 1.12 · 10−6 for f ≳ 1.5 · 10−12 Hz [151, 152].

• The CMB, which decouples at TCMB ∼ 0.3 eV, offers less stringent
but broader bounds at (h2ρGW/ρc)0 < 6.9·10−6 for f ≳ 1.5·10−15 Hz
as CMB decoupling happens later than BBN [151, 153, 154, 155].

Except for cases in which the spectrum of GWs is a very narrow peak,
we can interpret the bound on (h2ρGW/ρc) as a bound on the fractional
energy density of GWs ΩGWh

2. These limits are indicated as the light blue
band in Fig. 4.1.

5The treatment as an extra number of neutrino species as opposed to an extra
number of, say, photons is purely due to convention. We could just as well define a
new parameter ∆Nγ and treat the GWs as an addition to the photon density. That
would in fact be closer to the truth as gravitons are massless while neutrinos eventually
freeze out.

71



Scalar-induced gravitational waves from inflation

4.3.3 Direct detection

Of course it is possible to constrain primary and secondary tensor modes
by directly detecting the associated GWs. Currently, the two methods
for achieving this are Pulsar Timing Arrays (PTAs), which use the timing
residuals of millisecond pulsars to detect GWs in the nano-Hertz regime [84],
and ground-based detectors such as LIGO, Virgo, and Kagra, which are
sensitive to GWs in the audio band (∼ 100 Hz). By searching for continu-
ous, stochastic signals in these detectors, it is possible to put constraints on
the energy density of GWs at the frequencies they are sensitive to [159, 160].
In particular, as observation time increases, the power law integrated sen-
sitivity of Michelson interferometer experiments like LVK and LISA scales
as T 1/2, where T is the observation time. For PTAs, this scaling is time-
dependent [161].

Recently, PTA measurements have hinted at a measurement of stochastic
GWs in the nHz regime, but it is yet to be determined whether this signal
is of astrophysical or cosmological origin [162].

Figure 4.1 shows the sensitivity curves for the most competitive contem-
porary detectors, the International Pulsar Timing Array (IPTA) [163, 164,
165, 166, 167] and the Advanced Laser Interferometer GW Observatory
(aLIGO) [168]. Future detectors such as the Square Kilometre Array
(SKA) [169], the Einstein Telescope (ET) [170], and LISA [80] will fur-
ther extend the reach of GW detection. To create this figure, a 4-year
mission duration for LISA and a 10-year observation period for aLIGO,
ET, and SKA were assumed. The sensitivity for IPTA corresponds to the
observation time to date.

Determining the sensitivity of LISA to SIGWs coming from different mod-
els of inflation and determining whether they can be distinguished from
other sources of stochastic gravitational waves is the purpose of Paper
IV.

4.3.4 Primordial Black Holes

Primordial black holes (PBHs) [171, 172] are one of the main motivators
for assuming that the scalar perturbations are enhanced at small scales,
as if the Pζ generated during inflation is large enough, the perturbations
generate overdensities as they re-enter the Hubble horizon. If these over-
densities are dense enough with respect to the surrounding region, their
gravitational pull overcomes their pressure, and they collapse into black
holes. The mass of these black holes is directly related to the scale of the
perturbations that generated it, meaning that SIGWs can provide a direct
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constraint on the abundance of PBHs if measured and coming from large
overdensities.

A full discussion of the details that go into calculating the abundance of
PBHs and their measurements is far outside the scope of this work (see e.g.,
[173, 174] for reviews), but we very schematically outline the main points.
The abundance of PBHs is determined by the amplitude of the curvature
perturbations at scales corresponding to the horizon size at re-entry. To
see how a curved region can collapse into a black hole, it is useful to look
at Eq. (4.5). Since we are looking at the moment when the perturbation
re-enters the Hubble horizon, we can define a locally curved universe with
curvature K(r) (not to be confused with the wavenumber k), which gives
us the Friedmann equation:

H2 = 1
3M2

pl
ρ− K

a2 . (4.121)

By introducing the density contrast of a perturbed region on the comoving
hypersurface with respect to the background

δ ≡ ρ− ρ̄

ρ̄
, (4.122)

it is easy to relate this quantity to the curvature through

δ =
3M2

plK

ρ̄a2 = K

a2H2 . (4.123)

Assuming radiation domination ρ̄ ∝ a−4, and ignoring the spatial depen-
dence of K, this “mini universe” would eventually collapse in on itself if
K > 0, which happens when 3K/a2 = ρ/M2

pl, i.e., when the comoving scale
of this region is equal to the Hubble horizon and when δ = 16. Translat-
ing this to the wavenumber of the perturbation k and denoting the time
at which a curvature perturbation with wavenumber k reenters as tk, one
arrives at

δ(tk) = K

H2(tk)a2(tk) ≳ δc (4.124)

where δc is the critical threshold for PBH formation. If the curvature
perturbations exceed this threshold, PBHs form with a mass at formation
of [173]

mPBH(k = aH) ∼ γ
4π
3

ρ

H3

∣∣∣∣∣
k=aH

= γmH , (4.125)

6The approximation as a mini universe breaks down when the scale of the perturba-
tion becomes smaller than the Hubble sphere, but for an intuitive order of magnitude
estimate, this treatment is still instructive.
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where γ is an efficiency factor and mH is the mass contained in the Hubble
sphere. We assume that the overdensities collapse soon after they reenter
the horizon.

The Hubble mass can be related to the scale of the comoving wavenumber
k through [175]

mH ≃ 10M⊙

(
g∗

106.75

)1/2
(

106.75
g∗,s

)2/3(106 Mpc−1

k/κ

)2

, (4.126)

where κ = k/aH and aH is evaluated at Hubble crossing. At scales cor-
responding to LISA k ∼ mHz, the mass of the PBHs is in the range of ∼
10−12 M⊙ or ∼ 1021 g, which corresponds to the asteroid mass range.

The abundance of PBHs at formation is then given by the fraction of the
Universe’s energy density contained in PBHs,

β = ρPBH
ρtot

, (4.127)

where ρtot is the total energy density of the Universe.

The abundance of PBHs is typically measured by constraining the ratio
of the PBH mass density to the total dark matter density today fPBH =
ΩPBH/ΩDM. The constraints on ΩPBH can then be translated into con-
straints on the amplitude of the power spectrum of curvature perturba-
tions, Pζ(k), and subsequently into a constraint on the SIGWs P(2)

h (k), at
horizon crossing, assuming a certain formation mechanism, evolution, and
a fixed thermal history.

After PBHs form, they behave like any other black hole population, which,
on large scales, acts like a pressureless non-relativistic fluid. They therefore
contribute to the energy density of the Universe as matter, which makes
PBHs compelling candidates for dark matter, which do not require any
modification of the standard model of particle physics.

Figure 4.2 gives an overview of the current constraints on the abundance of
PBHs as a function of mass as constrained by different types of measure-
ments: Hawking evaporation, microlensing, direct GW detection, black
hole accretion, and galaxy dynamics. The PBH masses that roughly corre-
spond to scales that LISA is sensitive to are indicated by the gray shaded
region. It is clear that LISA is well situated in a “sweet spot” where
currently there are no constraints on the abundance of PBHs, and they
therefore could make up a large fraction of the dark matter.
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Figure 4.1: Fractional energy density of GWs ΩGWh2 as a function of
frequency for gravitational wave sources generated by inflation and ap-
proximate sensitivity curves for various detectors. The dotted lines rep-
resent the first- and second-order tensor (scalar-induced) perturbations
sourced for two inflationary scenarios: slow roll (SR) assumes a power
spectrum for Pζ and a flat P(1)

h across all scales shown using the Planck
2018 best fit values for As, ns and the BICEP2/Keck upper bound on
r. The induced fractional GW energy density at first- and second or-
der is shown in pink and gray, respectively. The ultra-slow roll (USR)
scenario assumes an enhancement of the scalar perturbations at small
scales using the potential from Paper IV. The region that is excluded
by ∆Nν is marked as the light blue band. The solid lines represent
the sensitivity curves for the currently existing IPTA (red) and aLIGO
(blue) detectors. The BICEP2/Keck upper bound at k = 0.05 Mpc−1 is
indicated by the gray arrow. The dashed lines represent the sensitivity
curves for the future LiteBIRD (purple), SKA (green), LISA (green),
and ET (orange) experiments. The detector sensitivity curves have been
taken from [156, 157] (LiteBIRD), [99] (IPTA, SKA, aLIGO, and ET),
and [158] (LISA). We are assuming a 4-year mission duration for LISA
and a 10-year observation period for aLIGO, ET, and SKA.
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Figure 4.2: Bounds on the PBH abundance as a function of mass. The
solid lines represent current constraints from Hawking evaporation (or-
ange), microlensing (blue), direct GW detection (purple), black hole ac-
cretion (red), and galaxy dynamics (green). LISA will probe PBH masses
at around the 10−12M⊙ scale, and the rough scale is represented as the
gray shaded region. The bounds are taken from [176].
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Abstract. We present the GPry algorithm for fast Bayesian inference of general (non-
Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-
training, special hardware such as GPUs, and is intended as a drop-in replacement for tradi-
tional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a
Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine
classifier that excludes extreme or non-finite values. An active learning scheme allows us to
reduce the number of required posterior evaluations by two orders of magnitude compared
to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the
posterior at optimal locations, further reducing wall-clock times. We significantly improve
performance using properties of the posterior in our active learning scheme and for the def-
inition of the GP prior. In particular we account for the expected dynamical range of the
posterior in different dimensionalities. We test our model against a number of synthetic and
cosmological examples. GPry outperforms traditional Monte Carlo methods when the evalu-
ation time of the likelihood (or the calculation of theoretical observables) is of the order of
seconds; for evaluation times of over a minute it can perform inference in days that would take
months using traditional methods. GPry is distributed as an open source Python package
(pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
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1 Introduction

One of the fundamental tools of science is the comparison of observations with theory. In
many situations, this involves inference on the parameters of a model (or on models them-
selves) given some observed data. This is often realised using Bayesian statistics, where
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one synthesises the probability of some data having been acquired into a likelihood func-
tion, assumes some a priori distribution for the model parameters, and samples from the
product of both (proportional to the so-called posterior) using Monte Carlo methods, the
most common ones in Cosmology being based on Markov Chain Monte Carlo [1–4] or Nested
Sampling [5–12].

The new era of cosmological surveys will produce data in rapidly increasing amount and
quality [13, 14]. This will in turn raise the computational costs of traditional Monte Carlo
pipelines: data quality will call for an increase in the precision of theoretical computations
of the observables that are compared against the data (e.g. including physical effects that
could have been so far neglected), and likelihood computations will involve operations on
ever larger data vectors. This can and will eventually result in traditional Bayesian inference
becoming prohibitively slow, further increasing the already damaging carbon footprint of
scientific computations in computer clusters [15, 16]. In order to keep being able to exploit
cosmological data for parameter inference, we need to develop more advanced algorithms that
significantly reduce the computational costs of performing inference, and machine-learning
based methods are one of the most promising tools for that.

So far, a number of different solutions have been proposed. A family of them focus on
substituting the theoretical computation of observables (or intermediate quantities to arrive
at them) by appropriately-trained, usually Neural Network-based, emulators that cheaply
map the theoretical parameters onto the space of vectors of observables. For applications to
Cosmology and Astrophysics, see e.g. [17–40]. These methods are robust in the sense that
they are guaranteed to reproduce the true posterior distribution, as long as the emulator is
properly trained, which is easy to check a posteriori. Unfortunately their utility is limited
by the need to retrain them whenever the theoretical model under investigation is varied.
Additionally, as experiments become ever more precise, in order to achieve sufficient accuracy
a larger number of systematic effects needs to be accounted for, which requires ever more
costly experimental likelihoods, which cannot be easily accelerated by emulators.

Another proposed solution are simulation-based likelihood-free approaches, inspired by
Approximate Bayesian Computation, but accelerated by Neural Networks [41, 42]. There,
Neural Networks are used to learn a mapping between sets of model parameters and their
corresponding simulated data, so that they can automatically extract features, marginalise
over nuisance parameters, learn a likelihood function, or ultimately produce a posterior
distribution of the model parameters when fed real experimental data. Recent development
and applications in Cosmology and Astrophysics can be found in [43–54]. The claimed
advantages are that they may discover or take into account features in the data that are not
captured by summary statistics or observables, and the lack of need to formulate a likelihood,
which can be complex or prohibitively expensive in some cases. On the other hand, they
tend to require expensive training and the reusability of the trained networks is limited when
considering model extensions. The need to accurately account for modelling uncertainty and
possible biases has also been highlighted recently [55, 56].

The solution presented in this work differs from the previous ones in that it retains the
full computation of the observable and data likelihood, but minimises the number of points
in the parameter space where this full pipeline needs to be computed; it uses these points
to create a model of the posterior, and to iteratively predict the next optimal evaluation
locations. For the emulation of the posterior we use Gaussian Processes (GP) [57], which
have a small number of hyperparameters that are easily interpretable in terms of properties
of the posterior, and thus make it easier to incorporate prior information about its functional
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form. Furthermore, due to their simplicity, Gaussian Processes generally require smaller
training sets than for example Neural Networks. We combine the GP model of the posterior
with a support vector machine (SVM) [58, 59] to restrict the parameter space to a region of
reasonable posterior values.

Our approach expands on previous work applying Bayesian quadrature and active sam-
pling to statistical inference [60–64], which we improve upon by incorporating the expected
scaling of the log-posterior with dimensionality, the definition of a cheap and consistent con-
vergence criterion and the treatment of extreme log-posterior values with an SVM classifier.
A previous attempt at a similar approach to inference in Cosmology with a GP surrogate of
the posterior can be found in [65], and in the context of emulator-training in [66]. Alternative
emulator-based approaches, relying on Variational Inference, have also been proposed, e.g.
combined with a GP surrogate model to reduce the number of posterior evaluations [67–70],
or targeted towards high dimensionalities but allowing for numbers of evaluations similar to
MCMC [71, 72].

The result of our work is the development of the GPry algorithm. An open source
implementation is available as a Python package (pip install gpry) and at https://github
.com/jonaselgammal/GPry. GPry does not need any pre-training or parameter tuning, so it can
be used as a drop-in replacement for traditional Monte Carlo algorithms for dimensionalities
Nd . 20 (since the computational cost of the algorithm makes it impractical for larger
problems in its current implementation). Unlike neural networks it also does not require
any specialised hardware such as GPUs. As we will show, it allows for accurate and fast
emulation of posteriors for moderate dimensionalities, including non-Gaussian distributions,
by using just a few hundred or thousand evaluations of the posterior distribution. Especially
when individual likelihood evaluations are computationally expensive, this can result in large
speedups of typically two orders of magnitude.

This paper is structured as follows: in section 2 we review the basic concepts and
useful notation. We continue in section 3 presenting the modelling choices involved in the
construction of the GP surrogate model. The learning strategy for acquiring new sampling
locations as well as a criterion for deciding on convergence are discussed in section 4. In
section 5 we put together all the pieces and present the full algorithm, and comment on
its general performance. We discuss the performance of Gpry on different synthetic and
cosmological problems in section 6, and we present our conclusions and discuss possible
future development in section 7. Appendix A is dedicated to discussing the inclusion of prior
information on the dynamical range of the posterior into the surrogate model at different
stages of the algorithm.

2 Basic concepts

In order to establish a consistent notation and a deeper understanding of the underlying
concepts, we quickly summarize some of the theory, which we are going to use in the detailed
description of section 3.

2.1 Bayesian inference of model parameters

A usual Bayesian inference problem is that of estimating the probability distribution
p(M(x)|D) of the parameters x of a modelM given some experimental data D, also known
as posterior. Following Bayes’ theorem, this is proportional to the product of the likelihood
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p(D|M(x)) (the probability of D having being measured given the model with these param-
eter values), and the prior probability of the parameter values x given the model, p(x|M),
assigned before (or idependently of) the experiment that measured D.1 Fixing the model
M and the data D, we can drop their explicit dependence to simplify notation. With that
Bayes’ theorem reads

p(x) ∝ L(x)π(x) , (2.1)

where p(x) is the posterior, L(x) the likelihood, and π(x) the prior.
In Cosmology, likelihoods are typically provided by experimental collaborations, are

generally non-analytic, or analytic but non-differentiable, and usually also costly to evaluate.
Even when they are well-behaved, they sometimes depend on cosmological quantities whose
computation in terms of the parameters to be inferred has the same undesirable properties.
In these cases, the targeted solution to the inference problem is obtaining a Monte Carlo
sample of the posterior, often using MCMC- or nested-sampling-based methods.

This work focuses on reducing the number of evaluations of the posterior (and thus the
likelihood) needed to solve the inference problem. We do that by creating a surrogate model
of the posterior using a Gaussian Process, and developing an active learning algorithm that
decides sequentially on a small optimal set of parameter values where to evaluate the true
likelihood, so that the surrogate model is accurate enough. One can then e.g. extract the
usual Monte Carlo sample from the resulting surrogate model of the posterior (which, as a
bonus, is differentiable) at a very low computational cost.

If the goal is to obtain 1D/2D posteriors (and their corresponding CLs) from the GP,
one could wonder if there would be alternative efficient methods of computing the required
marginalization integrals. However, generally the integrals involved are not solvable analyt-
ically and due to the high dimensionality of these integrals in most applications, the most
efficient ways of computing them numerically are usually Monte-Carlo methods. We discuss
the computational costs of this choice in section 5.3.

2.2 Gaussian processes
We briefly present the relevant GP notation and formulae that we will need for this work.
For a more thorough review, see [57].

Gaussian Processes are useful to emulate a sufficiently smooth2 function f(x) at an arbi-
trary point x (within a certain domain) given a set of sampling locations X = {x1, . . . ,xNs}
and their corresponding function values yi = f(xi) for i = 1 . . . Ns. This last equation can
be abbreviated to y = f(X) (notice the bold symbol for y and f and the dependence on
X) following the usual notation in GP literature, where the number of samples is treated as
an additional vector space of dimension Ns, with components denoted by a subscript. This
means that X becomes a Ns ×Nd matrix, where Nd is the dimensionality of the parameter
space. This way, we write for a scalar function s(x) evaluated at the Ns different sampling lo-
cations the vector s(X) with components [s(X)]i = s(Xi), and similarly for scalar functions
of two arguments the tensor s(X,X) with components [s(X,X)]ij = s(Xi,Xj).

A Gaussian Process posits that the function f(x) in question is a random draw from a
family of functions, informed by the sampling locations. For a given position x such random

1The missing proportionality constant is the inverse of the evidence p(D|M), which can usually be ignored
in parameter estimation and will hence be omitted in all subsequent calculations. Note though, that the
evidence is important when performing model selection.

2Here, “sufficiently smooth” refers to an underlying function which n-times continuously differentiable
where n ≥ 1. The function may still have some statistical or numerical noise added on top of it.
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draw of a function f(x) is assumed to be Gaussian-distributed (hence the name) around a
mean function m(x) with a covariance between the functional value at two different points
given by some function k(x,x′), often called the kernel of the GP.

f̂ ∼ GP(m, k) ⇔ f̂(x) ∼ N (m(x), k(x,x)) , (2.2)

where f̂ denotes a random function draw from the GP and ∼ means “is distributed according
to”. As a multivariate Gaussian distribution, the GP is completely defined by its mean and
kernel functions. Their precise choice only aids in faster and more predictive emulation,
but they do not in general restrict the shape of the functions being modeled, which can be
complete arbitrary as long as the kernel function fulfills a number of weak conditions [73] (that
all kernels considered in this work do). Importantly, while the correlation of the function
value at two points is assumed to be Gaussian, this neither means that the function is itself
assumed to be Gaussian, nor that the mean of the family of functions is presumed to be
Gaussian.

We usually restrict the GP so that it agrees with the given set of sampling locations
for all draws, f̂(X) != f(X) = y, sometimes up to some uncorrelated Gaussian noise. This
information modifies the value of the drawn function’s predictions f̂(X∗) away from the
sampled values X. The joint distribution for sampled and non-sampled locations is

[
f̂(X)
f̂(X∗)

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X,X) k(X,X∗)
k(X∗,X) k(X∗,X∗)

])
. (2.3)

This defines the conditional probability for the predictions f̂(X∗) given the observations
(X,y) as

f̂ |f(X)=y ∼ GP(µ,Σ) ⇔ f̂(X∗)|f(X)=y ∼ N (µ(X∗),Σ(X∗)) . (2.4)

with mean vector and covariance matrix

µ(X∗) = m(X∗) + k(X∗,X)k(X,X)−1 [y −m(X)] , (2.5)
Σ(X∗) = k(X∗,X∗)− k(X∗,X)k(X,X)−1k(X,X∗) . (2.6)

This conditioned GP for new sample predictions is then called the posterior GP. Comparing
equations (2.2) and (2.4) we notice that the drawn samples f̂ differ between the unconditioned
and the conditioned GP, because the latter includes the additional information from the
sampling locations. The algorithm described in section 5 will sequentially add new samples
to the GP. These will be incorporated by updating the mean and covariance of this conditioned
GP (µ, Σ) using sequentially enlarged sample sets (X,y).

From here on, we will use the scalar versions of equations (2.5) and (2.6) evaluated at
an arbitrary single location x as µ(x) and Σ(x), as well as σ(x) =

√
Σ(x) as the uncertainty

of the GP at a location x to simplify notation, implicitly assuming it has been conditioned on
the samples X. As is standard in the literature (and as discussed without loss of modeling
power for the GP), we will assume a zero-mean function m(x) = 0 in all cases.

Kernel functions are usually chosen from a particular family of functions (such as squared
exponentials, Matérn kernels, . . . ),3 parameterized by some hyperparameters θ. Their value

3The kernel function is typically chosen according to the differentiability and smoothness of the given
target function, see also section 3.1 for more details.
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is commonly chosen so that they maximize the likelihood that the GP would have produced
the given sampled values y at the sampled locations X. In practice, one marginalizes the
evidence of the training data given the Gaussian Process [57]:

− log p(y|X, θ) = 1
2y

T (k(X,X) + σ2
nI)−1y + 1

2 log |k(X,X) + σ2
nI| −

Ns

2 log 2π , (2.7)

where I is the identity matrix, and σn is an arbitrary small level of uncorrelated noise
included to make the algorithm more numerically stable (possibly in addition to a noise
term added into the kernel function to model stochasticity of the original function). Using
Bayes’ theorem, the product of this likelihood and some prior can then be sampled or (more
commonly) simply maximized with respect to the hyperparameters θ.

3 Surrogate model of the posterior

Our goal is to interpolate an unknown, possibly multi-dimensional log-posterior distribution
with a GP, using the mean prediction µ(x) of the GP as a best estimate for the distribution’s
value. Furthermore we want to achieve an accurate estimate for the standard deviation σ(x)
in order to compute where to sample next. The nature of the posterior distribution being
an (un-normalized) probability distribution implies certain properties/restrictions, that can
be incorporated into the GP surrogate model in order to increase the performance of the
algorithm and reduce the risk of numerical issues. These will be discussed in the following.

3.1 Choice of kernel function
As discussed in section 2.2, a kernel function with a minimal set of properties will ensure
that the GP converges towards the target function (the log-posterior) given a large enough
set of samples. However, in order the keep the computational costs low, we aim to use as few
samples as possible, and this can be achieved by choosing a kernel function that encapsulates
our prior information on the posterior distribution.

The prior information that we aim to encode is that the log-posterior distribution is
deterministic,4 and smooth over a characteristic correlation length-scale, that possibly differs
between dimensions and is a fraction of the prior size (as we cannot resolve length-scales
much larger than the prior). Our default choice in GPry is an anisotropic quadratic RBF
kernel multiplied by a constant:

k(x,x′) = c2 · exp
(
−

d∑

i=1

|xi − x′i|2
2L2

i

)
, (3.1)

where c is usually called the output-scale, and Li=1,...,Nd
are the length-scales.5 On top of the

choice of the kernel function itself, prior knowledge on the target function is also incorporated
4It would be easy to extend this to stochastic functions by adding a noise component to equation (3.1),

but posterior density functions of physical data are most commonly deterministic.
5If the covariance matrix of the posterior mode that is modelled is approximately known, and that mode

is Gaussian enough, one could transform the parameter space using that covariance matrix so as to normalise
the Gaussian, in which case the target function is isotropic and we can use a single common length scale,
significantly reducing the computational cost of fitting the hyperparameters. In practice, this approach has
its own difficulties: even at late stages of learning, the set of training points is too small to compute the
covariance matrix via simple Monte Carlo (weighting by their posterior value), and one needs to resort to
other approaches, such as fitting a Gaussian to the training, or MC-sampling from the GP (see e.g. [65]), the
cost of which would likely compensate for the time saved by fitting a single isotropic correlation length-scale.
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in the priors for the hyperparameters. The fundamental assumption is that the length scales
should be of an order of magnitude close to that of the posterior modes, and that the latter
would be of an order of magnitude not much smaller than that of the prior ranges for the
parameters of the posterior. We express this belief as the length-scales being between 0.01
and 1 in units of the prior length in each direction. The lower bound ensures that the GP
does not overfit during early stages of the learning by fitting each sample individually as a
peak on top of the mean of the GP,6 while the upper bound represents the fact that the size
of the prior box should prevent drawing any conclusions on the characteristic length-scale
far beyond the region that can be sampled. The prior of the output scale c is chosen to be
very broad and allows for values between 0.001 and 10000. The Nd + 1 free hyperparameters
{c, Li} are then chosen such that they maximize equation (2.7).7

3.2 Parameter space transformations

As a un-normalized probability density, the posterior is a positive function (p(x) ≥ 0 ev-
erywhere), and even for a simple one-dimensional Gaussian, it varies over multiple orders
of magnitude. Both enforcing positivity and reducing the dynamic range of function values
can be achieved by modeling the result of a power-reduction operation P (p(x)) on the pos-
terior (e.g. a logarithm [61] or a square root [60]). We use a log-transformation, since in
physics it is very common for likelihoods to belong to the exponential family of probability
distributions [74] and in practice many likelihood codes usually return log-probabilities.

Another advantage of modelling in log-space, that was pointed out in [61], is that the
characteristic length scale of isotropic kernels (e.g. Radial Basis Function (RBF) or Matérn)
tends to be larger, which implies that the GP surrogate better generalizes to distant parts of
the function, making the GP more predictive.

In practice, we construct a surrogate model for log p(x) given some training samples
y = log p(X). In addition, at every iteration of the algorithm, we internally re-scale the
modeled function using the mean and standard deviation of the current samples set as

log p̃(X) = log p(X)− y
sy

, (3.2)

where y and sy are the sample mean and standard deviation respectively. This re-scaling
acts like a non-zero mean function, causing the GP to return to the mean value far away
from sampling locations. This in turn encourages exploration when most samples are close
to the mode and exploitation when most samples have low posterior values. This effect can
be seen in figure 3 where the mean of the GP is pushed to higher values close to the edge of
the prior. The variance reduction through division by sy aids in ensuring numerical stability
by restricting the range of values in the training set.

6This condition assumes that the size of the mode is larger than about 1/100th of the prior width in each
dimension, which we find reasonably permissive. If this is not the case, either the prior dimensions or the
allowed range for the length scales can be re-adjusted.

7In a full hierarchical Bayesian treatment, instead of maximising we would have to generate a family of
GPs with hyperparameters following the likelihood of equation (2.7), each of them giving different predictions
according to equations (2.5) and (2.6). Unfortunately, generating a MCMC sample in order to marginalize over
equation (2.7) as function of θ is intractable. There have been some attempts at approximate methods [61]
however even those introduce some computational overhead which we want to avoid. Luckily, as the number of
training points of the GP increases we expect equation (2.7) to get narrower (for sufficiently tame distributions)
so that the difference becomes negligible.
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As for the space of parameters x, we transform the samples such that the prior boundary
becomes a unit-length hypercube. For unbounded priors, such as Gaussian or half-Gaussian,
we choose the prior boundary such that it contains a large fraction of the prior probability
mass (99.95% by default, which is usually sufficient for the usual few-σ CL contours).

This parameter transformation aims at forcing posterior modes to have similar sizes
in all dimensions. This usually leads to comparable correlation length scales of the GP
across dimensions, which increases the effectiveness of the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) constrained optimizer [75], used to optimize both the GP
hyperparameters and the acquisition function.

Henceforth, if not specified otherwise, in the context of the training set we will refer
to X (or x) as the un-transformed values of the sampling locations while y refers to the
un-transformed values of the log-posterior distribution at X.

3.3 Treatment of infinities and extreme values
In realistic inference scenarios the prior is often chosen to be much larger than the posterior
mode, since very little initial information is usually known. In these scenarios the log-
posterior function is bound to return minus infinity for parameter values far away from the
region of interest (the posterior modes): the negative log-posterior can be too large to be
represented as a floating point number, or the physics code used to compute the likelihood
could fail and report a zero-valued likelihood.

This is valuable information but unfortunately we cannot simply add those infinite
values to the GP as equations (2.5) and (2.7) become ill-defined. Hence we are forced to find
some numerically stable way of incorporating this information. Naively one could simply
swap out the infinities with some large negative value. This approach turns out to be rather
problematic as it introduces a discontinuity in the posterior shape or at least one of it
derivatives thus modifying the hyperparameters of the GP’s kernel. If we instead ignore
these points, the learning algorithm will repeatedly try to acquire points in their vicinity,
hence getting stuck.

Our solution to this problem is to simultaneously exclude these infinities from the GP,
and to use them to divide the parameter space into a finite and an infinite region using
a support vector machine (SVM) classifier [58, 59].8 A SVM defines a hyperplane which
maximizes the separation between samples with locations xi belonging to one of two classes
y ∈ {−1, 1}. By defining the distance between points through a kernel function k(x,x′)
the separating hyperplane is drawn in a higher-dimensional space which is connected to
the sample space by a non-linear transformation. This effectively transforms the separating
hyperplane into more complex hypersurfaces which are better suited to the classification
problem at hand.

The categorical predictions ŷ(x) of the SVM are then given by

ŷ(x) = sgn
(
b+

Ns∑

i=1
αik(xi,x)

)
(3.3)

where the hyperparameters b and αi are optimized in the training procedure.
We simply use the prediction of the SVM of whether a point is classified as being

finite (ŷ = +1) or infinite (ŷ = −1) to “correct” the prediction of the GP. Compared to
8A similar “safe exploration space” approach, using different tools, has also been used e.g. [76, 77] in the

context of Bayesian optimization.
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Figure 1. Illustration of the SVM classification. Yellow dots correspond to uniformly sampled
locations where the log-posterior distribution is finite while purple dots correspond to infinite log-
posterior samples. The green lines are the boundary found by the SVM separating the finite and
infinite regions. The blue contours show the 1- and 2-σ contours of the posterior distribution (in
this case a correlated 2-d Gaussian). In our construction this finite region is designed to roughly
correspond to the 10σ volume of the Gaussian distribution.

equations (2.5) and (2.6) we can explicitly write

µGP+SVM(x) = µ(x) ·
{

1 if ŷ(x) = +1
−∞ if ŷ(x) = −1 .

(3.4)

For now, we assert such classification from the SVM with absolute certainty, and set

ΣGP+SVM = Σ(x) ·
{

1 if ŷ(x) = +1
0 if ŷ(x) = −1 .

(3.5)

The precise way of cutting the covariance is irrelevant in our case.9 Figure 1 shows a two-
dimensional toy example of such a classification for a Gaussian distribution in a comparatively
much larger prior region.

Aside from making the acquisition procedure more efficient by ignoring unimportant
regions, this approach also keeps the overhead cost of the algorithm lower than including a
regularized version of the inifinities in the GP. This is because the computational expense of
training a SVM scales as N2

s , which is smaller than the N3
s scaling for the GP.

It is important to recognize that the same arguments can be made for very low pos-
terior values which are far away from the top of the mode, even for well-behaved posterior
distributions in high dimensionality. While the SVM is not strictly needed here, adding these
values to the surrogate GP model is undesirable as they can dramatically change the scale
of the emulation problem even though they do not provide a large amount of additional

9Still, one could imagine using the SVM output before sgn function (the classification step) to more
smoothly suppress both mean and covariance, possibly combined with a sigmoid function.
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information. In this sense, the algorithm also benefits from a regularization of forwarding
too small log-posterior values to the SVM.

We accomplish that by treating all values where log p(x) is smaller than some (suffi-
ciently low) threshold as infinities. However, one has to be careful about the un-normalized
nature of the posterior when applying the threshold. In practice, we compare against the
maximum of the posterior in the training sample (corresponding to point xmax) and only
treat values as infinite when log p(x) < log p(xmax) − T . We provide a default value for T
based on the prescription of appendix A, also giving the user the option to set it manually.

Lastly, we stress that the additional modelling presented in this section is only used
in practice if the log-posterior distribution ever returns either negative infinities or values
below the proposed threshold. Otherwise, only the bare GP model described in the previous
sections is used.

4 Learning strategy

In section 3 we have described the process of constructing a Gaussian process to emulate the
log-posterior distribution once a given set of samples are known. As discussed, a sufficiently
large naive set of samples (e.g. prior samples) will in general lead to an accurate model.
Unfortunately the computational cost of the algorithm scales with the number of samples Ns,
both directly as the number of times a possibly-costly true posterior needs to be evaluated,
and indirectly by increasing the computational cost of the Gaussian Process itself (as ∼ N2

s

at evaluation, and ∼ N3
s when fitting). In practice, samples are chosen so that their location

maximises an acquisition function, representing some measure of how valuable they would
be for the emulation when added to the GP. We discuss this approach in section 4.1. A
further reduction in computational costs can be achieved by taking advantage of the number
of machines/CPUs in computing clusters (and of CPU cores in user-level CPUs). Thus, we
discuss the parallelization of the algorithm in section 4.2. Finally, in section 4.3 we discuss
the vital question of when to end the acquisition of further samples automatically. Together,
this allows GPry to tackle the emulation of arbitrary distributions in a highly parallelized
way without relying on the end-user to optimize the number or locations of the samples.

4.1 Acquisition function
As discussed above, in order to find a small, but informative set of sampling locations, we
will look for locations that maximize an acquisition function a(x). This function will be
constructed using a combination of the mean and variance of the GP estimate, in such a way
that it balances exploration of the full parameter space (typically where the uncertainty in
the prediction is high) with exploitation of areas of high posterior values (which should be
more precisely modeled).

4.1.1 Choice of the acquisition function
A simple ansatz for an acquisition function that balances exploration and exploitation could
be the product of the estimated posterior p(x) (which is always positive) and its uncer-
tainty σp(x):10

ap(x) = p(x) · σp(x) . (4.1)
10This is by no means the only ansatz one could make to arrive at a suitable acquisition function. For a

thorough investigation see [78].
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Given that the GP models log p, we have to convert the GP’s mean µ(x) and uncertainty
σ(x) into those of the linear p(x). Since the transformation from log p to p is non-linear, the
corresponding prediction for p from the GP is not a Gaussian distribution and the compu-
tation of its mean and standard deviation is non-trivial. However, in practice these details
are irrelevant since the acquisition function only needs to approximate the most beneficial
sampling location. Then, we can simply write for the mean p(x) ≈ exp[µ(x)] and for the
uncertainty σp ≈ exp[µ(x) + σ(x)] − exp[µ(x)]. With this, the acquisition function above
becomes:

ap(x) ≈ exp[2µ(x)] {exp[σ(x)]− 1} , (4.2)

which is similar to the acquisition functions used in [79, 80]. This approximation can be
further linearized assuming σ(x)� 1 to give alin

p (x) = exp[2µ(x)]σ(x).
As discussed in the next section, we found it beneficial to boost the exploratory be-

haviour of the acquisition function, especially in high dimensions. To achieve that, we include
a relaxation factor ζ ∈ (0, 1] multiplying the mean to discourage exploitation (similar to what
was done in e.g. [65]). This yields the final acquisition function:

ap(x) ≈ exp[2ζµ(x)] {exp[σ(x)− σn]− 1} (4.3)

which can again be linearized as alin
p (x) = exp[2ζµ(x)][σ(x)− σn] . Notice also that from the

σ(x) term we have subtracted a possible uncorrelated noise term proportional to σ2
n in the

kernel function (equivalently, a constant term added to the diagonal of the kernel covariance
matrix). This is because for acquisition purposes we only care about the uncertainty coming
from decorrelation from the sampled locations.

The logarithm of this acquisition function is maximized at every acquisition step which
yields a candidate for the next sampling location. The computational overhead of the acqui-
sition procedure is dominated by the prediction of µ(x) and σ(x) by the GP which scales
as ∼ N2

s .

4.1.2 Acquisition hyperparameter
The effect of ζ in equation (4.3) is that of balancing exploitation and exploration. Values of
ζ that are too high make the algorithm focus too much on the top of a posterior mode, so
that samples in the tails are unlikely to be proposed, and during large numbers of iterations
the GP model is mostly stable (only adding high-posterior but low-information samples).
This leads to unnecessarily high computational costs, and often to false positives in assessing
convergence. These effects are more dramatic in higher dimensions. On the other hand,
values of ζ that are too low would produce more regular but slower convergence, neglecting
information about the expected value of the true function that could have been exploited to
converge faster. In general, a sub-optimal choice of ζ will increase the amount of samples
necessary for convergence, sometimes quite significantly.

To select appropriate values, we have conducted a series of experiments on degenerate
Gaussian posterior distributions in 2, 4, 8 and 16 dimensions (for Nd < 4 the effect of ζ is
small), generated as explained in section 6.1. In order to isolate the effects of ζ, in these tests
we have not used the parallelization scheme described in section 4.2. The results of these
experiments in terms of KL divergence (see appendix B) are shown in figure 2, and have led
us to propose the empirical formula ζ = N−0.85

d as a default value for ζ (users can override
it if prior knowledge of the posterior shape suggests that exploration should be favored over
exploration or vice versa). Preliminary tests in higher dimensions (up to Nd = 27) have
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Figure 2. Distribution of Kullback-Leibler divergences between the GP prediction and the true
distribution at various learning stages (i.e., Ns samples) for random correlated Gaussian posteriors
with dimensionality Nd = 4, 8, and 16 (150, 50, and 50 realizations, respectively). The boxes represent
inter-quartilic ranges, the black line inside them the median, and the whiskers and dots represent the
tails of the distributions. For each dimensionality there is a visible trend towards an optimal trade-off
between exploration and exploitation in terms of ζ.

shown this formula to produce good results. The fact that a fixed ζ becomes greedier as
dimensionality goes up should not come as a surprise, as discussed in appendix A.

4.1.3 Optimization of the acquisition function
For the maximization of the acquisition function we use the L-BFGS-B optimizer [75] in-
cluded in the scipy Python package. Since this optimization problem is highly non-convex,
with the acquisition function often having many disconnected maxima, the numerical opti-
mization is performed multiple times from different randomly-drawn starting locations. In
high dimensions drawing an initial point with a non-vanishing value of the acquisition func-
tion becomes increasingly unlikely as the prior volume with vanishing posterior increases as
a power of the dimension (curse of dimensionality).

Because of this problem, optimal proposals most likely fall in the vicinity of the current
sampling locations. In order to generate such points we, by default, use a centroid algorithm:
take the average location of Nd + 1 randomly selected samples, and perturb them in each
dimension by the coordinate difference to one the samples multiplied by a draw from an
exponential distribution with parameter 1/λ. Here a lower λ increases the spread of the
proposed locations. A fraction of the locations are drawn from a uniform distribution within
the original prior boundaries, in case a region of high posterior has not yet been captured by
the current samples.
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For highly non-Gaussian distributions this method of proposing points tends not to be
exploratory enough. In these cases we resort to drawing proposals uniformly within the prior
volume.

Lastly also provide a method to generate Gaussian-distributed proposals given an esti-
mate of the mean and covariance matrix of the posterior, if such information happens to be
known.

We notice that alternative approaches to maximizing the acquisition function exist.
In [65], the sampling locations with high acquisition function value are picked out of an
MCMC of the mean GP model.

4.2 Parallelization
The naive approach of using the acquisition function presented above is to acquire and eval-
uate sampling locations in sequence, with each acquisition step consisting of the evaluation
of the true posterior distribution (and updating the GP model) in order to obtain the next
candidate for a sampling location. However, as often multiple processing units (either on the
same or across different machines) are available, we can make this algorithm more efficient
by attempting to propose batches of sampling locations, so that the true posterior, which is
expected to be the largest source of computational cost, can be evaluated in parallel.

There have been many different proposals for batch acquisition for GPs in the past which
can broadly divided into two categories: algorithms like [81–84] construct an acquisition
function which can be optimized for several points at once. However, for a d-dimensional
posterior distribution acquiring q points at once involves global optimization in d·q dimensions
which obviously becomes computationally prohibitive even if d and q are not extremely large.

The second category [83–85] works by sequentially acquiring multiple points without
having to sample from the posterior distribution in between and afterwards evaluating the
true posterior at the gathered locations in parallel. We will be using one of these methods
called the Kriging believer method [84].

The Kriging believer method. The fundamental assumption of the Kriging believer
method (similarly to our assumption when constructing the acquisition function) is that the
value of the posterior distribution in any point roughly equals the predicted mean of the GP.
We can therefore acquire a batch of points by sequentially (1) obtaining a maximum of the
acquisition function at x∗, (2) assuming for it a log-posterior evaluation equal to µ(x∗), (3)
adding it to an intermediate augmented GP (thereby producing a different new maximum
of the augmented acquisition function), and repeating until the desired number of locations
has been proposed. This method will be increasingly accurate as more samples are added to
the GP so that µ(x∗) approaches the true log p(x∗). An illustration of the Kriging believer
algorithm sampling on the log of a normal distribution is shown in figure 3.

The obvious advantage of this method, as discussed above, is that the true posterior
can be evaluated in parallel for the acquired locations. This is beneficial as we expect the
true posterior evaluations to dominate the computational cost in most scenarios. In addition,
there is another source of speedup: since adding new mean-valued samples does not change
the optimal hyperparameters of the GP according to equation (2.7), there is no point to
re-fitting them (see section 5.3).11

11On top of that, the necessary step of inverting the kernel matrix after adding new points, in order to
get predictions using equations (2.5) and (2.6), could be accelerated by taking advantage of the fact that
the inverse of the previous kernel matrix is known, using a fast, blockwise matrix inversion formula. To our
knowledge this has not been pointed out in the past. In our case, the amount of possible time savings is small.
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Figure 3. Illustration of the Kriging believer method. Three points are acquired sequentially (three
left plots) by using the prediction from the GP instead of evaluating the posterior at each iteration.
After the three samples have been acquired the posterior function can be evaluated at these points
(right). The hyperparameters of the GP regressor only need to be refit at the last step. Obviously
using this approach comes at the expense of requiring more points to converge (e.g. the third point
did not add much information and is unlikely to have been selected after the second one if using
sequential acquisition). This can however be compensated by the computation time that is saved by
both acquiring points faster and evaluating the posterior in parallel. The characteristic length-scale
L of the kernel increases as more samples are added, which aids the better fit in the right panel.

In terms of the precise size of the batch, there is evidently a trade-off between the
speedup gained by not refitting the GP’s hyperparameters at every iteration, and the inac-
curacy of the GP’s mean prediction making the active sampling less efficient as the number
of Kriging believer steps grow. Due to the loss of accuracy in the predictions, more samples
are required to converge to the true distribution, but this is compensated by the speedup
achieved through parallel evaluations of the posterior. Overall this results in a smaller num-
ber of iterations (hence a smaller wall-clock run time) than sequential learning, as long as
the size of the batches is kept reasonable.

We find that a batch size corresponding to at most the number of dimensions of the
inference problemNd works reasonably well. We therefore set the standard number of Kriging
believer steps to the minimum between Nd and the number of parallel processes.

4.3 Convergence criterion
The last component of our algorithm is its convergence criterion, which should terminate it as
soon as (or at least not much later than) the GP has reached sufficient precision at modelling
the log-posterior. Precision could be assessed as the reduction in the variance of a GP-
predicted global posterior quantity such as the evidence

∫
p(x) dx. Analytical computation

of these quantities in terms of the GP are usually not possible, e.g. in our case because of the
modelling of the log-posterior instead of the posterior itself, or because the product of a GP
times arbitrary priors does not have a closed-form integral in general. Numerical approaches
would involve MC samples of the GP-modelled posterior, which come at a reasonably-small
computational cost, but whose use for the convergence criterion would involve obtaining them
at (nearly) every iteration.

A much cheaper convergence criterion would involve computations using the much
smaller set of current and/or proposed GP samples. We propose one such criterion, that
we call CorrectCounter, based on observing the accuracy of the learning process and stop-
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ping when the model does not seem to learn any new information. We will show how that
the speedup in this case does not necessarily come at the cost of precision.

The assumption here is that our algorithm stops learning if the GP’s predictions at
newly acquired sampling locations x repeatedly match the value of the true log-posterior
log p(x) distribution to close approximation. We set a threshold using relative and absolute
tolerances εabs, εrel such that

|µGP+SVM(x)− log p(x)| !
< εabs + |ymax − µGP+SVM(x)| · εrel , (4.4)

where ymax is the largest log-posterior from the current GP sample, and µGP+SVM(x) is the
GP’s prediction at x before the GP has been fit to this point. This criterion can be computed
at virtually no cost, since both µGP+SVM(x) and log p(x) have been computed as part of the
acquisition procedure. If this condition is satisfied a few times in a row we consider the
model converged and stop the algorithm. Convergence in this case means a guarantee that
(on average) new evaluations of the GP will at least approximately comply with the true
posterior at the same location (as opposed to convergence meaning stability of some global
quantity).

Similarly to the discussion in sections 3.3 and 4.1.2, the behaviour of this convergence
criterion is sensitive to the dimensionality Nd of the problem. As explained in appendix A,
since the dynamic range of a log-posterior enclosing a given probability mass grows with
dimensionality, the effect of a constant εabs will become more stringent as dimensionality in-
creases, making the criterion fail to report as converged GP models that already very precisely
characterise the posterior. In appendix A we propose a way to relax εabs in a dimensionally-
consistent way. The relative thresold εrel should not be affected by dimensionality, and it is
fixed to 0.01. In both cases, we also give the user the option to set their own values for the
convergence criterion.

On the other hand, as the number of dimensions Nd increases, correctly mapping the
tails of the distribution becomes increasingly more important (for a detailed discussion see
appendix A), while the surrogate model tends to converge first around the maximum of
true posterior distribution. The tails usually remain underrepresented at first and only get
explored later in the acquisition procedure. A higher dimensionality therefore makes it likelier
to acquire a batch of consecutive correctly-predicted points in a non-converged GP model
around the top of the mode. We account for this by increasing the number of times points
have to be predicted correctly to claim convergence to n = Nd/2 (with the exception of fixing
n = 4 for low dimensionality, Nd < 8). This reduces the risk of neglecting convergence at
the tails.

We tested the CorrectCounter criterion on a set of correlated Gaussians in 2, 4, 8,
12 and 16 dimensions, generated as explained in section 6.1. We target a KL divergence
with respect to the true Gaussian distribution of less than 5%. As shown in figure 4, we
achieve such threshold with the settings described above for the tolerances and the number
of consecutive correct predictions, at least for the range of dimensionality targeted in this
study. Towards higher dimensionality there is a trend to converge before the convergence
curve flattens out entirely, which hints at the need for more sophistication in dealing with
dimensional consistency. We leave this for future work.

We also note that we have written a criterion based on the costlier KL divergence (see
appendix B), which we provide as an alternative option. This alternative criterion is based
on the posterior emulation stabilizing over multiple subsequent steps (defined through the
KL divergence being below some critical threshold). This criterion comes with its own sets of
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Figure 4. Left: distribution of KL divergences between GP models and their correspoding true
posterior at CorrectCounter-reported convergence, for Nd = 2, 4, 8, 12, 16-dimensional random cor-
related Gaussians (200 draws per dimensionality). Only a small fraction (< 5%) surpass our target
value of Dsym

KL = 0.05. Right: medians (solid lines) and interquartile ranges (shaded bands) of the KL
divergences between GP models and their correspoding true posterior, for the same sets of Gaussians,
as function of their number of accepted (finite) samples. The dashed vertical lines indicate the me-
dian number of accepted steps at which CorrectCounter reports convergence, and the shaded vertical
bands the respective interquartilic ranges. As expected there is a trend towards higher values of Dsym

KL
visible as Nd increases, but it is well under control for the dimensionalities targeted in this study.

challenges, such as incorrectly detecting convergence when non-informative points are added
to the GP or the costly nature of its computation. Nonetheless it can be preferable when the
log-posterior function is extremely expensive to evaluate or when the posterior distribution
exhibits unusual features, as this convergence criterion is not only sensitive to the acquired
samples but also to the hyperparameters of the GP.

5 The full algorithm

In this section we present the full structure of the algorithm, entailing the generation of the
initial set of training samples (section 5.1), the main acquisition loop that sequentially looks
for optimal samples and checks convergence (section 5.2), and the final generation of a Monte
Carlo sample of the trained GP surrogate model of the posterior, which can be used to get
marginalised quantities (section 5.3), together with a comparison of computational costs of
this algorithm against those of classic Monte Carlo.

5.1 Initial training set
In order to start the sequential acquisition of points we need an initial training set containing
samples from our posterior distribution. These do not have to be very informative samples
but need to be finite (according to the definition in section 3.3) and uncorrelated, in order to
generate some very crude but meaningful initial interpolation of the log-posterior distribution.

Of course we want to choose this sample such that the ratio of finite to infinite log-
posteriors is reasonably high, in order not to waste too many posterior evaluations on the
initial point generation. In low dimensions and with small priors compared to the size
of the mode, any random generator (such as draws from the prior itself, or from a uniform
distribution within the prior bounds) would produce initial samples satisfying the requirement
above. As the ratio of the prior to posterior volume grows with the number of dimensions,
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randomly drawing a finite point from the prior becomes increasingly unlikely. In this case,
prior knowledge of the posterior can be incorporated, usually in the form of a “reference”
distribution which is a rough guess of where the mode might be (the same that is commonly
used to generate initial points for MCMC). In general any guess for reasonable parameter
values that lead to a finite posterior can be used, which can be obtained from physical
considerations of the underlying model.

5.2 Main algorithm
In algorithm 1 we show the main algorithm used within the GPry tool in pseudo-code, con-
sisting mostly of the optimization and acquisition loops (the latter based on the Kriging
believer approach). This pseudo-code mostly summarizes the ideas which are explained in
the corresponding sections 3 and 4.

Note that the nr,GP starting locations for the optimization of the hyperparameters in
line 4 are sampled logarithmically in the hypervolume. The step of line 4 is currently the
most expensive step, scaling as N3

s due to the required repeated matrix inversion required
for computing log p(θ|X,y). This is why we only perform this step every nopt-th time,
and otherwise we optimize the hyperparameters starting only from the previous best fit.
The next most expensive step is the acquisition function optimization in line 12, and scales
approximately as N2

s due to the repeated evaluation of the acquisition function requiring the
evaluation of a(x), which itself requires matrix multiplications.

5.3 Modelling the marginalized posterior
As mentioned above, to compute marginalized 1D/2D posteriors, we have to compute a high-
dimensional integral of our emulated posterior (see section 2.1). This can be achieved by
integrating the GP numerically through the creation a Monte Carlo sample, either based on
nested sampling, Metropolis Hastings sampling, or (using the backward differentiable nature
of the GP) even Hamiltonian sampling. As GPry is interfaced with the Cobaya package [86],
its standard samplers can also be used to generate the final MCMC sample. Currently, this
sampling is performed using the GP’s mean prediction according to equation (3.4) as the
posterior distribution to sample.12

One important question that such an approach poses, however, is whether the emulation
of the posterior with the GP with subsequent sampling of the surrogate posterior will be
computationally more efficient than the direct sampling of the true posterior. For this, let
us use a simple back-of-the-envelope computation. Consider the time to run a full sampling
of the true posterior as Nttt, where tt is the approximate time for a single evaluation and
Nt the total number of samples required. Instead, the time to run a sampling of the GP
posterior can be estimated as Ngtg, where tg is the average time for a single GP evaluation
and Ng the total number of required GP samples. Additionally, and crucially, there is the
additional overhead of constructing the GP in the first place, which we will denote simply as
To for now (we will discuss this in more detail later). In that case, the construction of a GP
is advantageous if

To +Ngtg < Nttt . (5.1)
Typically it can be assumed that tg � tt except for very simple toy models. Furthermore,
typically Ng ' Nt if one uses MCMC/nested sampling methods to sample the GP, or even

12Technically, the information that is available through the covariance of the GP could be used to obtain
an estimate of the uncertainty of emulation on our final posterior sample. As the acquisition procedure only
stops if the posterior mode is mapped accurately enough, this assures that at convergence this variance is
sufficiently small to safely be neglected.
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Input: X (initial samples), y (initial log-posterior values)
[1] for n < Nmax do
[2] fit SVM with X, y
[3] every nopt −−− th time
[4] find θMAP = argmax[log p(θ|X,y)] from nr,GP starting locations

equation (2.7)
[5] otherwise
[6] find θMAP = argmax[log p(θ|X,y)] from last best-fit equation (2.7)
[7] end
[8] GP_fit(X, y)
[9] Xnew = [ ]

[10] X lie = X and ylie = y
[11] repeat M times
[12] find xadd = argmax[a(x)] starting from nr,acq starting locations
[13] X lie append xadd and Xnew append xadd
[14] ylie append µ(xadd) Kriging believer
[15] GP_fit(X lie, ylie)
[16] end
[17] ytrue = logL(Xnew) + log π(Xnew) parallelizable
[18] X append Xnew
[19] y append ytrue
[20] if is_converged (e.g. equation (4.4)) then break
[21] end
[22] Sample µ(x) with MC sampler
[23] return MC sample

[24] Function GP_fit(X, y)
[25] Compute K−1 = k(X,X|θMAP)−1 matrix inversion
[26] µ(x) = µGP+SVM(x) equations (2.5) and (3.4)
[27] σ(x) =

√
ΣGP+SVM(x) equations (2.6) and (3.5)

[28] a(x) = exp[2ζµ(x)]{exp[σ(x)− σn]− 1} equation (4.3)
[29] end

Algorithm 1. The GPry algorithm in a condensed format, omitting the internal transformations that
are made to the data. M is the number of Kriging believer steps made in each iteration. The overhead
of the algorithm is dominated by the computations performed in lines 12 and 4.

Ng � Nt if one can use Hamiltonian MC methods on the GP but not on the true posterior.
Thus, as long as To remains reasonably lower than Nttt (the total runtime of the MCMC), the
use of a GP would always be advantageous. It is thus crucial to obtain a precise estimate for
the overhead time To. This overhead depends strongly on the dimensionality of the problem,
the non-Gaussianity of the posterior, and the underlying machine executing the code.

Looking at the timing information from the multivariate Gaussian cases of section 6.1,
the overhead was dominated by the numerical optimization of the acquisition function (line 12
of algorithm 1), taking very roughly 100s · (Ns/100)2.4 (to give an order-of-magnitude esti-
mate). The next most important factor, the optimization of hyperparameters (line 4 of al-
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gorithm 1) only takes around 3s · (Ns/100)3.2 (order of magnitude) in total. It has a smaller
pre-factor since it is only performed every nopt-th iteration, while the acquisition optimiza-
tion is performed M · nr,acq times per iteration, see algorithm 1. It is thus comparatively
irrelevant for Ns � 104, which is almost always the case for the range of dimensionalities
considered in this study.

In figure 5 we report the approximate expected total runtime of GPry compared to the
Cobaya implementation of the MCMC sampler CosmoMC [1, 2, 86] and the nested sampler
PolyChord [9, 10] (via its Cobaya interface). For each dimensionality, these estimates were
generated by drawing a large set of random multivariate Gaussians, and computing the dis-
trubution of total evaluations needed for convergence (according to their respective default
criteria) for MCMC, PolyChord and GPry. We multiply these numbers of posterior evalua-
tions with the posterior evaluation times on the x-axis and add the overhead of each algorithm
to get the total runtimes on the y-axis. For GPry, the computational overhead is caused by
the optimization of the acquisition function and the fitting of the GP hyperparameters, and
it is constant with respect to the posterior evaluation time, producing the particular shape
of the curve. We neglect the overhead of MCMC and PolyChord as it is tiny compared to
the overhead of GPry [86].

For example, in the case of a Nd = 12 multivariate Gaussian, GPry would outperform
the MCMC (which requires ≈ 1.5 ·105 evaluations) for posterior evaluation times larger than
∼ 0.1 seconds. Comparing to the average runtime of a cosmological code such as CLASS, on
average we find a significant speedup all the way up to 16 dimensions.

Note that in figure 5 we show single-core performance with as many Kriging believer
steps as dimensions (while still evaluating the posterior sequentially). The curves shown for
MCMC and especially for PolyChord would drop almost proportionally to the number of
cores available, while GPry does not scale quite as well. However, for a similar amount of
computational resources, up to a number of processes similar to the dimensionality of the
problem, these results are expected to hold in order of magnitude. While the runtime of
MCMC and PolyChord is dominated by the posterior evaluations, the overhead of GPry is
considerable and might scale differently depending on the underlying architecture. Further
improvements in runtime could be made by optimizing the underlying GP implementation.

6 Examples

After having discussed the design of the GPry code in sections 3 to 5, we now demonstrate
the performance of the code using a variety of examples, both Gaussian and non-Gaussian
distributions considered in the literature, as well as examples from cosmological applications.

For each of the examples in this section, we will analyze the performance of GPry in
terms of convergence by producing a number of runs with identical GPry settings (same
choices of kernel functions, acquisition function and other training settings) but different
random seeds, so that they start from different initial training samples (uniformly drawn
from the prior) and find generally different optima for the acquisition function and the GP
hyperparameters (maximizations are started from random starting positions). On top of
the intrinsic variability between runs, the covariance matrices and means of the Gaussian
examples in section 6.1 and the log-Gaussian ones in section 6.2.1 are drawn randomly for
every run to make the tests more robust, whereas for the rest of non-Gaussian and multimodal
examples, as well as the cosmological ones, the posteriors are fixed.
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Figure 5. Order of magnitude estimate of total runtime comparison of GPry with the MCMC sampler
CosmoMC/Cobaya and the nested sampler PolyChord (via its Cobaya interface). The comparison is
done for multivariate Gaussians of various dimensionalities, and shows the median as a line and the
25% and 75% quantiles as a shaded area. The comparison is run with only a single CPU, but the
orders of magnitude hold for similar computational resources for all three methods. The light blue
band gives an approximate range of computation times of standard cosmological codes (like camb or
CLASS) which depend strongly on the considered model and observables. Note that while MCMC
and PolyChord are dominated by the posterior evaluation time everywhere, GPry is dominated by
overhead for small posterior evaluation times.

6.1 Multivariate Gaussians
The example of a multivariate Gaussian distribution is enlightening as a benchmark for
the average performance of the GP, as it can quite trivially be scaled with dimensionality
and many likelihood functions can — at least around their maximum — be reasonably well
approximated by Gaussian distributions. We can thus use it as a benchmark for performance
and accuracy as a function of dimensionality, as well as to model critical scalings such as that
of the ζ parameter from section 4.1, the factors involved in equation (4.4), and the timings
relevant for section 5.3 (see appendix A).

We generate correlated multidimensional Gaussians with log-likelihood function

logL(x0, . . . , xn) = −(x−m)TC−1(x−m) + log((2π)n|C|)
2 (6.1)

by drawing a random covariance matrix that satisfies
Ci,j = σiσjcorri,j (6.2)
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where corri,j is a randomly drawn correlation matrix with uniformly drawn eigenvalues,13

and the standard deviations are uniformly drawn as σi ∈ [0, 1]. The mean vector m is set to 0
and the prior fixed to 5σi in each direction. This ensures that the mode is centered within the
prior. The case in which parts of the mode are cut off by the prior is discussed in section 6.2.
We then conducted tests in {2, 4, 8, 12, 16} dimensions recording the Gaussian KL divergence
of equation (B.3), the number of posterior evaluations, and the overall overhead. The final
results were already shown in figures 2, 4 and 5.

6.2 Non-Gaussian distributions
One of the main goals of our algorithm is to be robust with regards to the functional shape of
the posterior distribution. We therefore tested the code also on non-Gaussian distributions
with varying degrees of pathological features. All adopted priors are flat in the respective
parameters.

6.2.1 Log-transformations
Our first example of a non-Gaussian feature is motivated by a common occurrence in Physics.
In many applications, there are free scales in the problem which are not known across one
or more dimensions in the parameter space. For these parameter one usually samples their
logarithm with a flat prior (which is equivalent to imposing a logarithmic prior), distributing
the prior probability density evenly across multiple orders of magnitude. If the likelihood
is Gaussian in the (linear) parameter, this typically leads to a log-Gaussian distribution of
the form

10x ∼ N (µ, σ) (6.3)

across some dimensions.
To test whether our algorithm is robust with respect to these kind of likelihoods we

drew randomly correlated 4-dimensional Gaussians according to equation (6.1) where the
first two dimensions {x0, x1} are sampled in log-space. The performance of the algorithm in
this case is shown in figure 6. We recover the correct posterior shape and manage to sample
the posterior accurately with only around 200 samples. An additional benefit of this test is
that it shows that our algorithm is robust with respect to cases where the mode has a hard
prior cutoff (|xi| < 2 in this example).

In order to explore the limits of our algorithm, we perform the same test in 8 dimen-
sions, with 4 of them being sampled in log-space. We set a budget of at most 2000 posterior
evaluations. Figures 7 and 8 show the distribution of Dsym

KL as a function of the number of
posterior samples and at convergence for the default settings of CorrectCounter proposed
in appendix A (εabs = 0.01[∆χ2](1), εrel = 0.01) and for five times more accurate settings
(εabs = 0.002[∆χ2](1), εrel = 0.002). With default settings convergence tends to be declared
prematurely while the more accurate settings mitigate this problem. Figure 9 shows corner
plots of two example runs at declared convergence by CorrectCounter with default settings,
one where convergence is declared prematurely while the mode is still being explored, and
one where the mode has been characterized correctly (our target Dsym

KL of 0.05 has not been
reached in either case). This higher-dimensional example highlights two limitations of our al-
gorithm. On one hand, the overhead of the GP regressor after such a large number of samples

13They are uniformly drawn between 0 and 1, then multiplied by a normalization constant such that their
sum equals the number of dimensions, in order to avoid cases where many of the eigenvalues are close to zero
simultaneously.
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Figure 6. 2d and 1d posterior distributions of a typical four-dimensional log-gaussian distribution
(left) at convergence (180 posterior evaluations), and convergence with respect to the true model
against number of accepted steps for 200 realizations, where the blue band shows the {25, 50, 75}%-
quantiles for the KL-divergence, and the grey band does the same for convergence as defined by
the CorrectCounter criterion. (Right) The posterior distribution is cut off in x0 and x1, which is
correctly captured by GPry.
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Figure 7. Left: distribution of KL divergences at convergence, according to CorrectCounter with
default settings, of the 8-dimensional log-gaussian draws. Right: convergence against number of
accepted steps, where the blue and grey bands are defined as in figure 6. Even though most of the runs
converge within an acceptable accuracy, our convergence criterion declares convergence prematurely.
83 of the 84 runs we performed were declared as converged. Figure 9 shows the contour plots for a
two examples of a prematurely and a correctly reported convergence with these default settings of
CorrectCounter.

(∼ 2000) reduces the advantage of our algorithm with respect to traditional MC samplers.
On the other hand, the prematurely reported convergence seems to be a consequence of the
combination of long tails and higher-dimensionality: the sequential optimization algorithm
fails to propose points at the tails, which occupy a small fraction of the hypervolume in
higher dimensionality. An active sampling scheme that explores the parameter space more
thoroughly may mitigate this problem [87].
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Figure 8. Same as figure 7, with the required accuracy of the CorrectCounter convergence criterion
increased by a factor of 5 (εabs = 0.002[∆χ2](1), εrel = 0.002). The KL-divergence of the converged
runs is much better than in figure 7. However, only 58 of 84 runs are declared as converged by the
convergence criterion when the evaluation budget has been exhausted.
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Figure 9. Triangle plots of the 8-dimensional log-Gaussian example at convergence according to
CorrectCounter with default settings. Left: premature convergence (928 posterior evaluations,
Dsym

KL = 1.49). The mode has been found but not been explored completely. Right: correct clas-
sification as converged (736 posterior evaluations, Dsym

KL = 0.08). Even though our target Dsym
KL of

0.05 has not been reached the contours are still recovered correctly.

6.2.2 Curved degeneracies

We also investigated whether more general curved degeneracies with different length-scales
in the different parameter dimensions could be modeled correctly. We use three examples.

1. Example one is a “banana”-shaped curved degeneracy, a slightly modified version of
a benchmark found in [88], which is based upon an eight-order polynomial in the
exponent and exhibits a long tail in the x1 ≈ 4x4

0 direction. The log-likelihood of this
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distribution is

logL(x0, x1) = −(10 · (0.45− x0))2/4− (20 · (x1/4− x4
0))2 . (6.4)

Figure 10(a) shows how GPry performs at sampling this distribution. The posterior
shape is correctly recovered (at around ∼ 40 posterior evaluations) and shows good
match with MCMC.

2. Example two has a fourth-order polynomial in the exponent, but in this case the param-
eters are tuned in order to exhibit an extremely sharp cutoff away from the degeneracy
direction and an extremely long tail along the degeneracy. This particularly patholog-
ical case is the Rosenbrock function, commonly used to test minimization algorithms.
It is described by

logL(x0, x1) = −1
2
[
(a− x0)2 + b(x1 − x2

0)2
]
, (6.5)

where we set the parameters to their typical values of a = 1 and b = 100. It has a
long, narrow, parabolic “ridge” along which the maximum lies. Since the parabolic
degeneracy direction changes throughout, this is a good test for the robustness of GPry
for distributions which do not show a clear axis of correlation or symmetry. We impose
a uniform prior between [−4, 4] for both x0 and x1. The results for this posterior are
displayed in figure 10(b), which shows that even such a pathological posterior function
can be accurately described by the GPry code, while still requiring a reasonably small
number of posterior evaluations (∼ 60).

3. The third example is a sharp ring-like posterior. The log-likelihood of this distribution
is given by

logL(x0, x1) = −1
2




(√
x2

0 + x2
1 − µ

)2

σ
+ log(2πσ2)


 , (6.6)

with µ = 1 and σ = 0.05. This produces a ring-shaped posterior distribution with the
two very different scales µ (the location of the ring) and σ (the width of the ring).
Furthermore the maximum of this function is the ridge of the ring, making it especially
hard to capture the full mode and sample the distribution correctly. Nevertheless our
algorithm efficiently captures this mode within ∼ 75 posterior evaluations and agrees
well with MCMC.

We note that for all of these non-Gaussian examples more posterior evaluations are
required for convergence compared to the multivariate Gaussian examples with the same
dimensionalities. This is because the surrogate model requires more training samples to
correctly capture the non-trivial shape and the extended tails.

6.2.3 Multi-modal posteriors
We also want to check the robustness of the GPry tool against mild multi-modality. For this,
we make use of a modified Himmelblau function (which is commonly used in minimization
studies). The log-posterior is defined as

logL(x0, x1) = −1
2
[
a · (x2

0 − x1 − 11)2 + (x0 + x2
1 − 7)2

]
(6.7)
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(a) “Banana”-shaped degeneracy.

−2 −1 0 1 2

x0

0

1

2

3

x
1

0 1 2 3

x1

MCMC

GPry

25 50 75 100 125 150
Number of posterior evaluations

10−3

10−1

101

D
sy

m
K

L

(b) Rosenbrock likelihood.
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(c) Gaussian ring.

Figure 10. Performance tests for the non-Gaussian likelihoods with curved degeneracies presented
in section 6.2.2. For each case left: 2d and 1d posterior distributions for typical converged runs (40,
62 and 68 posterior evaluations, respectively); right: convergence against number of accepted steps,
where the blue and grey bands are defined as in figure 6. Even though these distributions display
very non-Gaussian behaviours, their shape is correctly recovered without needing a large number of
samples.
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where the term in the brackets corresponds to the Himmelblau function for a = 1. We
include this scaling factor a in the first term in order to create a “mild” multi-modal pos-
terior (a = 0.1) with relatively connected modes which we compare to the full Himmelblau
function (a = 1).

We show the results of sampling this distribution in figures 11 to 13. We observe that
many runs do not correctly capture the modes. In general, we can distinguish three modes
of failure of the GPry algorithm, nicely demonstrated in these examples.

1. The algorithm can find and sample all modes, but not weigh them correctly in relation
to each other. This is clearly visible in figure 11, where all modes are reliably sampled,
but the 1D posterior reveals the incorrect weighting.

2. The CorrectCounter criterion may falsely claim convergence and stop the sampling
when some of the modes have been well explored, while further sampling might have re-
vealed modes that have not been mapped. This is shown in figure 12, where we compare
the convergence to the true distribution (through the Dsym

KL ) when the CorrectCounter
criterion has claimed convergence, with that of the runs at a larger number of samples
(150 in this case). We observe that if the sampling had continued further, they would
have been able to better map the underlying modes. See also figure 13 for two examples
of these first two failure modes for the a = 1 case.

3. The SVM could characterize a whole region as irrelevant due to a very deep intermediate
valley even though a mode is present there. In that case, no amount of additional
sampling would reveal the hidden mode. This failure mode does not occur for the
a = 0.1 or a = 1 cases as the valleys are not deep enough there to be characterized as
irrelevant.

As such, we would like to stress that this package was designed with a focus on uni-modal
distributions and that there is no guarantee that in general all modes are captured or weighed
correctly by the algorithm. Deeper investigations into multi-modal GP algorithms are left
for future work. Note that for this distribution we used the PolyChord nested sampler [9, 10]
for generating our reference contours and MC samples of the GP surrogate as it — unlike
MCMC — reliably finds and explores all modes.

6.2.4 Performance for non-Gaussian and multi-modal distributions

In section 6.2 we have demonstrated that non-Gaussian distributions need a larger number
of training samples in order to converge when compared to Gaussian distributions with equal
dimensionality (in the particular examples presented in this section, the ratio of required
samples seems to be approximately 5). This need for a larger number of posterior evaluations
for convergence is also true for traditional algorithms. We could perform a similar analysis to
the one presented in figure 5 to check whether the comparison with MCMC and PolyChord
generalizes to non-Gaussian cases. Due to the wide variety of possible non-Gaussian shapes,
the required number of samples and the corresponding overhead will depend dramatically
on the distribution at hand. We therefore refrain from performing such an analysis at this
point, and leave it for future work, where a range of more realistic non-Gaussian distributions
would be tested, instead of the particularly pathological cases discussed here.
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Figure 11. 2d and 1d posterior distributions of a typical, converged runs of the “mild” Himmelblau
function (left) at convergence (58 posterior evaluations) and convergence against number of accepted
steps (right), where the blue and grey bands are defined as in figure 6. The function has four modes
which are all sampled but not weighed correctly by GPry. GPry on average needs few (. 75) samples
to claim convergence.
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Figure 12. Left: distribution of KL divergences at convergence according to CorrectCounter of
the standard Himmelblau function. In many cases convergence is declared while not all of the four
modes of the function have been explored, leading to large values of Dsym

KL . Right: distribution of KL
divergences for the same Himmelblau function at a budgeted, large number of samples (in this case
150). The distribution shows that sampling beyond reported convergence of the CorrectCounter
criterion would aid in improving the interpolation. Nonetheless, there still remain two modes: one at
low values of Dsym

KL (around Dsym
KL = 10−3) where all modes have been found and one at high values

(around Dsym
KL = 1) where some of the modes were not explored. Examples of this behaviour are

shown in figure 13.

6.3 Cosmology

We also test the GPry tool in the context of cosmological applications, such as the inference
of the posterior for Planck CMB anisotropy measurements (using the nuisance-marginalised
Planck Lite likelihood of [89, 90] in the context of the 6-dimensional ΛCDM model). We
performed 75 separate runs of the GPry tool, converging on average within only around 500
evaluations of the underlying theory code.14 The convergence history as well as the final

14Here we happen to be using CLASS [91], but since the GPry tool is fully interfaced with Cobaya [86], other
theory codes can be used as well.
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Figure 13. Exemplary 2d and 1d posterior distributions of the full Himmelblau function (a = 1). Left:
contours of the algorithm finding all modes and converging at 102 posterior evaluations (although the
1D posteriors are not weighed correctly). Right: example of the algorithm missing a mode completely
and falsely claiming convergence. This problem arises when the posterior distribution to map has
several disconnected modes. If one of the modes is missed completely early in the sampling procedure
the GP surrogate and hence the acquisition procedure may deem this region irrelevant and not sample
there. This behaviour is especially severe when the SVM classifies the region which contains the
additional mode(s) as infinite.

KL-divergence upon termination through the convergence criterion are shown in figure 14.
An exemplary case (close to the median in terms of required number of samples) is also
shown in figure 14, where we can see that the constraints are very well aligned with those of
the true posterior.

We note that the full Planck likelihood (including nuisance parameters) can also be
modeled with GPry, but in this case the high dimensionality of the parameter space (27
dimensions in our case) makes the proposal of new points to start the acquisition optimization
from (see line 12 of algorithm 1) rather difficult. If one uses the bestfit and covariance matrix
of the Planck chains to propose these points instead, the acquisition function can be well
optimized and the run does correctly map the posterior. We leave investigations of reaching
convergence for the full Planck likelihood without any kind of a priori information (such as
covariance matrix or bestfit) for future work.

Another illustrative example is that of the combined Big Bang Nucleosynthesis (BBN)
and Baryon Acoustic Oscillatons (BAO) measurements. We combine low redshift BAO from
6dFGS galaxies, the DR7 main galaxy sample, DR12 luminous red galaxies (together low-
z), as well as high redshift BAO from DR16 quasars, DR16 Lyman-α based BAO, and their
cross-correlations (together high-z), in order to constrain the Hubble constant and the matter
composition of the Universe. The BBN likelihood we adopt is the same as in [92]. For this
case we vary the number of effective neutrinos Neff , corresponding to the addition of dark
radiation to the ΛCDM model. This results in three possible data likelihood combinations,
depending on whether we combine with the BBN data the low redshift galaxy based BAO
likelihoods (“low-z”), with the higher redshift Lyman-α and quasar BAO likelihoods (“high-
z”), or we use both redshift samples (“combined”). For every combination, we sample the
four-dimensional posterior using both MCMC and GPry. In figure 15 we show the resulting
triangle plot which is in excellent agreement, demonstrating again the flexibility of GPry even

– 28 –

Appendix

125



J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

10−2 10−1

DKL

0

2

4

6

8

10

12

N
u

m
b

er

0 200 400 600 800 1000
Number of posterior evaluations

10−2

10−1

100

101

102

D
K

L

3.04 3.08

log(1010As)

0.04

0.06

τ r
e
io

0.116

0.120

0.124

Ω
c
h

2

0.0220

0.0224

0.0228

Ω
b
h

2

66

67

68

69

H
0

0.96

0.97

n
s

0.96 0.97

ns

66 67 68 69

H0

0.022

Ωbh2

0.118 0.122

Ωch2

0.04 0.06

τreio

MCMC

GPry

Figure 14. Constraints and convergence statistics in a ΛCDM model from Planck 2018 (TT, TE,
EE, lensing) using the nuisance-marginalised Planck Lite likelihood. The given constraints could be
obtained sampling only around ∼ 500 (in this case 420) evaluations of the underlying theory code and
likelihood. Top Left: distribution of KL divergences at convergence according to CorrectCounter with
default settings. Top Right: KL divergences against number of accepted steps, as defined in figure 6.
For both top plots, these distributions refer to 75 independent runs with identical training settings.
Bottom: 1D posteriors and (68.3%, 95.4%) contours of the 2D posteriors for one representative run
at convergence. The dots show the training samples in the order in which they were acquired, where
darker samples were added early and yellow ones late.

when the underlying model or the used data sets are varied. The contours can be recovered
with only around ∼ 100 posterior evaluations (as opposed to the ∼ 104 points used for the
MCMC chains).
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Figure 15. Triangle plot showing the marginalised constraints of the four-dimensional likelihood of
BBN+BAO measurements for high-z, low-z and combined likelihoods. GPry is able to recover all
contours correctly with only very few (124, 108, 80) posterior evaluations. The contours that we
recover are in excellent agreement with the constraints from MCMC.

7 Conclusions

In this paper we presented the GPry algorithm and Python package implementation. As
shown with both synthetic and cosmological likelihoods our algorithm requires vastly less
posterior evaluations for generating a fair Monte Carlo sample for Bayesian Inference than
current state-of-the-art MCMC and nested samplers. We report up to multiple orders of
magnitude improvements in the number of posterior evaluations required, as well as in wall-
clock computation time savings, making this algorithm very promising for slow likelihood
codes. This not only speeds up inference significantly but also reduces its carbon footprint.
Furthermore, we open a new window of possibilities by enabling inference from extremely
slow likelihoods (& minutes per evaluation), which otherwise would be impossible to sample,
since traditional samplers might take months to converge. In addition, since our algorithm
does not rely on specialized hardware (such as GPUs) or any kind of pre-training, it can be
used as a drop-in replacement for traditional Monte Carlo samplers. Particularly in the case
of cosmological applications it benefits from an interface with Cobaya.

Despite the algorithm’s impressive performance, there is still ample room for improve-
ment both in terms of speed and robustness. In a future series of papers we plan to explore
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four main avenue: (i) the overhead of constructing the GP surrogate model and the acqui-
sition procedure could be further minimized by using clever numerical techniques, allowing
GPry to outcompete traditional MC samplers even for fast likelihoods. (ii) As discussed in
section 6.2.3 GPry currently is optimized for unimodal posterior distributions; it would be
desirable to increase the robustness towards strongly multi-modal posteriors by generating
the starting points for the acquisition optimization in a special way, and using clustering
algorithms to track different modes separately. (iii) For likelihood distributions with signif-
icant stochastic or numerical noise, it would be beneficial to automatically adapt the noise
term in equation (2.3) without requiring prior knowledge. (iv) For high dimensionalities the
current methods of proposing additional points for restarting hyperparameter optimization
and sample acquisition are still relatively naive. Similarly, the overhead of the underlying
operations performed on the GP increases strongly with the number of acquired samples.
Both of these hurdles can be overcome with novel approaches, potentially unlocking even the
regime of high-dimensional likelihoods for further optimization with GPry.

The GPry algorithm and python package presented in this work enables parameter
inference in cosmology without high computational and environmental costs. This opens
up new possibilities for Bayesian inference on costly likelihood functions which have been
computationally unfeasible before. With many avenues of optimization of the code-base and
algorithm still left to explore, GPry will only continue to improve in efficiency and accuracy.
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A Posterior scale in higher dimensions

When considering a problem with a larger number of dimensions, there are a few aspects
of the problem that require special care. It is a well-known fact that for a 1-dimensional
Gaussian the region defined by one standard deviation around the mean contains ≈ 68%
of the total probability mass. The generalisation to higher dimensionality is non-trivial:
for multivariate Gaussians, considering distances defined in units of the covariance matrix
(Mahalanobis distance), the region defined by a unit away from the mean contains a smaller
and smaller fraction of the total probability mass as dimensionality goes up. This is, of
course, nothing more than the curse of dimensionality, and it will be present in most of the
inference problems that we target in this study.15

In our context of modelling a probability density function, this is reflected in the dy-
namic range of log-probability that needs to be carefully modelled, meaning that given some

15It affects distributions with significant tails, and most well-behaved distributions show tails, including
those in the exponential family (which includes multivariate Gaussians).
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confidence limit (CL) up to which we want our model to be especially precise, the differ-
ence between the log-posterior corresponding to that CL and the maximum log-posterior
will depend on dimensionality. This dynamic range will show up at three different steps
of the algorithm, explicitly in the treatment of infinities and extreme values in section 3.3
and the convergence criterion in section 4.3, and implicitly in the choice of the acquisition
hyperparameter in section 4.1.2. Taking into account this dimensionality scaling in the ways
explained below has proven to dramatically improve the performance of our algorithm.

In order to give a rough order-of-magnitude estimate for this log-posterior scaling, we
can turn towards a multivariate Gaussian distribution of the same dimensionality. Treated
as a random variable itself, a multivariate Gaussian log-probability is proportional to the
sum of Nd independent standard 1-dimensional Gaussian random variables (up to a linear
covariance-diagonalizing transformation). Thus the value of the Gaussian log-posterior when
multiplied by −2 follows a χ2 distribution with Nd degrees of freedom. Defining ∆χ2 =
2[max(log p)− log p] we find ∆χ2 ∼ χ2

Nd
.

We can use this to compute the posterior range corresponding to different CLs defined
by the posterior mass ε that they leave out, using the χ2 cumulative distribution function
FNd

(where Nd is the number of degrees of freedom):

1− ε = FNd
(∆χ2) . (A.1)

When referring to CLs in higher dimensions, we can alternatively name them as their 1D
equivalent normal Gaussian extent (1−ε = 0.683 for 1-σ, 1−ε = 0.954 for 2-σ, etc.). As such,
in the following when we refer to a n–σ contour in an arbitrary dimensionality within this
paper, we explicitly refer to the CL corresponding to that number of standard deviations in a
1D Gaussian. Explicitly, since F1(x) = erf(

√
x/2), and given that the value of a χ2

1 random
variable represents the squared number of standard deviations away from the mean in the
corresponding Gaussian, we can simply write 1− ε = erf(n/

√
2) for a given n-σ CL.

With this, we can get the expected scaling in Nd dimensions corresponding to a n-σ
probability mass as

[∆χ2](n) = F−1
Nd

[
erf(n/

√
2)
]
. (A.2)

As an example, the 2-σ (1− ε = 0.954) contour corresponds to a range [∆χ2](2) = 9.72 in 4
dimensions and [∆χ2](2) = 15.79 in 8 dimensions.

In section 3.3 we have used this result to derive the threshold value T for the SVM
(the criterion for deciding if a sample has a sufficient log-posterior to be added to the GP)
by imposing T = [∆χ2](nT )/2 which is the scaling of the log-posterior for nT = 20 (ε ≈
5.5 · 10−89), and has been found to work well for most practical applications (including all
examples in this work). This prescription ensures dimensional consistency: choices of T as
absolute values do not work well across different dimensions, causing the SVM to be too
permissive in low dimensions (does not capture extreme values efficiently) and too stringent
in high dimensions (points with significant log-posterior are excluded).

We have also used this result to scale the tolerance of the convergence criterion in
section 4.3. In particular, since the absolute threshold εabs is compared against differences
in absolute values of log p, we are scaling it as these differences do for a fixed difference in
credibility, in particular that of the first σ credible (hyper)volume: εabs = 0.01[∆χ2](1).

Regarding the dimensionality scaling of the learning hyperparameter, it is not trivial to
find an analytic prescription to write ζ as a function of [∆χ2](n). As discussed in section 4.1.2
we have derived an experimental scaling ζ = N−0.85

d , which corresponds to the value of ζ
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Figure 16. Histograms of aggregated Mahalanobis distances of the points in the training sets of
the realizations used in figure 2, for different dimensionalities (columns) and values of ζ (rows). The
optimal ζ’s from the experimental relation ζ = N−0.85

d are highlighted in orange/clear (for d = 4,
the two closest values are both highlighted). A remarkable result is that efficiency at converging (the
criterion imposed to get the optimal ζ’s) is maximised when the distribution of training points are
centered around the same CL (68%) in all dimensionalities, likely imposed indirectly by using the
dimensionally-consistent KL divergence to assess convergence when selecting optimal ζ’s.

that leads to convergence in the smallest number of posterior evaluations, as demonstrated
in figure 2. We can check a posteriori how these optimal dimensional-dependent ζ’s relate to
the CL’s at these dimensionalities. To do that, we compute the Mahalanobis distances of all
points in the training sets of all the realizations used for figure 2, and create histograms of
these distances for each dimensionality and ζ in figure 16. In this figure, we highlight the cases
that converged most efficiently in orange/clear, as assessed by the dimensionally-consistent
Kullback-Leibler divergence. We observe that convergence is achieved more efficiently when
ζ is such that the distribution of training points is centered around the same CL (68%)
in all dimensionalities. This underlines the idea that the dimensionally-dependent CL’s
should set the relevant scales in the surrogate model for optimal efficiency, and is possibly in
fact a consequence of having used a dimensionally-consistent method (the Kullback-Leibler
divergence) to assess convergence.

B KL divergence

A natural way of assessing how well a given distribution can approximate another reference
distribution is the Kullback-Leibler (KL) divergence. The KL divergence of the continu-
ous probability distribution P from the distribution Q, with respective probability density
functions p(x) and q(x), is defined as [93]

DKL(P ||Q) =
∫
p(x) log

(
p(x)
q(x)

)
dx . (B.1)

The KL divergence as defined above more strongly weighs disagreements between the two
probability distributions where p(x) is large. Since we want the approximation to be equally
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accurate in all regions where either distribution is large, we use a symmetrized version of the
divergence (often called Jeffreys divergence). It is defined as

Dsym
KL (P,Q) = 1

2 (DKL(P ||Q) +DKL(Q||P )) . (B.2)

A smaller value means that the two posteriors are in better agreement, and one typically
wants Dsym

KL (P ||Q) � 1 for good agreement. The dimensionality consistency of the KL
divergence guarantees that a given value for the divergence characterizes similar differences
across dimensionalities.

To compute the KL divergence explicitly, one can use the fact that the points in a Monte
Carlo sample of P are distributed as p(x)dx. One can thus approximate the integral as a
sum of the quantity log p(xi)− log q(xi) over all points in the MC sample (multiplied by their
respective weights/multiplicities).

We can use the KL divergence to assess the convergence towards the true distribution of
a GP surrogate model, if a sample from the true distribution can be obtained with the usual
MC methods (e.g. in the test cases presented in section 6). In that case, log p(xi) would
be the true log-posterior at point i in the MC sample, and log q(xi) would be the emulated
log-posterior from GPry at that same point. In practical applications where an MC sample
of the true posterior is not possible to obtain, the KL divergence can be used in a similar
fashion to define a convergence criterion by comparing GP surrogate models at consecutive
iterations of the GPry algorithm, summing over an MC sample of the GP surrogate model at
a particular step (see section 4.3).

In order to save a significant amount of memory, when using the KL divergence for the
purpose of a convergence criterion, instead of integrating a full MCMC, we only store the
information from the mean and the covariance matrix. This is equivalent to approximating
the underlying distributions as multivariate Gaussian distributions (with mean m and co-
variance C). While this is a bad description for the distribution itself, it is often the case
that when the multivariate Gaussian approximation of a distribution agrees to a high level
of precision with that of another distribution, so do the underlying distributions. Under this
approximation the KL divergence is simply given by

DKL(P ||Q) ≈ 1
2

(
tr
(
C−1

Q CP

)
− d+ (mQ −mP )TC−1

Q (mQ −mP ) + log
(detCQ

detCP

))
. (B.3)

Whether using the MC-summed or the Gaussian approximation for the KL divergence,
using it to naively define a convergence criterion, can be problematic, since running a full
Monte Carlo sample at every acquired point, or at every iteration, would dominate the
overhead of the algorithm. To reduce this computational cost, we take a number of decisions:
before deciding whether to re-run the Monte Carlo sample, we reweigh the previous one
and compute the KL divergence between it and the previous estimate. We then re-use the
reweighed one if the KL divergence between original and reweighed is small enough. We also
relax the convergence criterion of the Monte Carlo algorithm early in the sampling procedure
as convergence there is rather unlikely, so we do not need a high-quality estimation of the
mean and covariance at that point.

Convergence is then determined by defining a threshold c value such that the algorithm
stops when Dsym

KL < c during n iterations, suggesting that the interpolation of the posterior
distribution has stabilised. We set n = 2 as the default.
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Even with these improvements this method still produces considerable computational
overhead, mainly due to the fact that running a Monte Carlo chain needs a large number of
samples from the GP, especially as the number of dimensions increases.
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Abstract

Bayesian inference remains one of the most important tool-kits for any scientist,
but increasingly expensive likelihood functions are required for ever-more complex
experiments, raising the cost of generating a Monte Carlo sample of the posterior.
Recent attention has been directed towards the use of emulators of the posterior
based on Gaussian Process (GP) regression combined with active sampling to
achieve comparable precision with far fewer costly likelihood evaluations. Key to
this approach is the batched acquisition of proposals, so that the true posterior can
be evaluated in parallel. This is usually achieved via sequential maximisation of the
highly multimodal acquisition function. Unfortunately, this approach parallelizes
poorly and is prone to getting stuck in local maxima. Our approach addresses
this issue by generating nearly-optimal batches of candidates using an almost-
embarrassingly parallel Nested Sampler on the mean prediction of the GP. The
resulting nearly-sorted Monte Carlo sample is used to generate a batch of candidates
ranked according to their sequentially conditioned acquisition function values at
little cost. The final sample can also be used for inferring marginal quantities.
Our proposed implementation (NORA) demonstrates comparable accuracy to
sequential conditioned acquisition optimization and efficient parallelization in
various synthetic and cosmological inference problems.

1 Introduction

One of the fundamental tools of science is the comparison of observations with theory. In many
Bayesian inference pipelines, this involves inferring the parameters of a model (or models themselves)
given some observed or generated data. This is often realised directly using Bayes theorem: Given
some model parameters x ∈ Rd and data D, the conditioned probability p(x|D) (the so-called
posterior) is given by

p(x|D) = p(D|x)p(x)
p(D) . (1)

where p(D|x) ≡ L(x) is called the likelihood, p(x) ≡ π(x) the prior, and p(D) ≡ E the evidence.
We are dropping the explicit dependence onD as it is fixed for a given inference problem. Traditionally
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the posterior distribution is sampled with Monte Carlo (MC) samplers such as Markov Chain Monte
Carlo (MCMC) or Nested Sampling (NS). Unfortunately though, L(x) is often an expensive to
evaluate black box function, either because calculating observables from the theoretical model
involves expensive computations, because the amount of data is large, or both. This makes sampling
in such circumstances unfeasible with MC samplers, since they typically require O(103 − 106)
posterior evaluations for dimensionalities up to O(10).
There exist multiple approaches to accelerating such inference problems using machine-learning:
enhanced pre-conditioning to accelerate traditional MC methods [1–5], simulation-based, implicit-
likelihood inference algorithms [6–12], and emulators of underlying physical quantities (for Cosmo-
logical applications, see [13–18]). In this work we are going to focus on emulating the likelihood as
a function of its parameters, using a Gaussian Process (for previous approaches see [19–25] using GP,
and [26–28] enhancing the GP with a variational approximation). Any such emulation (such as that
based on a GP) will typically require a set of samples of the function at various parameter points. In
order to maximize the amount of information about the behavior of the function captured by these
samples, often times an active sampling approach is used: New samples are proposed, based on the
current best emulation, where the greatest probability of the estimated improvement of the future
emulation is located [29]. This is typically measured by an acquisition function. In this work we
will tackle the question of how the active sampling algorithm can be performed in a highly parallel
fashion while producing optimal or near-optimal batches of new proposed sampling locations.

In order to acquire a nearly optimal batch of proposed sampling locations for the active learning
algorithm in a highly parallel fashion, naive maximization of the acquisition function is not sufficient.
This is not only due to the multi-modal nature of a typical acquisition function – making it easy
for the optimizer to get stuck in local maxima, especially in moderately high dimensionality – but
also due to the inherent lack of parallelization of standard optimization routines. This is caused by
the sequential nature of the maximization algorithm, and more importantly requiring the result of a
given maximization in order to compute the conditional acquisition function, which will be used for a
subsequent maximization.

Our implementation combines the solution to both of these problems in an efficient way: First, by
making use of a MC sampling algorithm it is possible to acquire samples of growing function value
in a parallel fashion that is much more likely to find the global maximum. Second, through the usage
of a ranked pool (see Section 3) we are also able to create a batch of multiple proposed sampling
locations simultaneously. Both of these solutions combine to give us a highly efficient algorithm to
acquire multiple near-optimal active learning sampling positions.

In Section 3 we describe the general methodology employed in our algorithm. In Section 4 we show
the scaling with MPI processes as well as the acquisition histories for a number of toy examples, and
we conclude in Section 5. We also show further examples in the context of cosmological inference in
appendix E.

2 Theoretical background

2.1 Gaussian Processes

In this section we briefly summarize the main notation and theory. For a review, see [30]. A Gaussian
process (GP) is based on a probabilistic model of a function value at any point x, which follows a
conditioned Gaussian with a mean µ and a standard deviation σ. Any two sampling locations x and x′
are correlated in a multivariate Gaussian way with a correlation function given by k(x, x′), the kernel.
The choice of the kernel and its hyperparameters encodes assumptions about the behavior of the
underlying function (such as differentiability) into the GP. Given a set of sampling locationsX1,...,XN

and corresponding function values y1,...,yN the conditioned mean of the GP gives an emulation of
the underlying function, while its conditional standard deviation describes the uncertainty in the
emulation. A common choice for the kernel function and the one that we will use throughout this
paper is the radial basis function (RBF) kernel given in one dimension by

k(x, x′) = C · exp
(
(x− x′)2

2l2

)
(2)

where we will call C the output scale and l the length scale of the kernel. In multiple dimensions
(x ∈ Rd) we construct the kernel function as a product of RBF kernels, each acting on one dimension
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and have different length scales li:

k(x,x′) = C · exp
(

d∑

i=1

(xi − x′i)2
2l2i

)
(3)

By optimizing the marginal log-likelihood of the hyperparameters θ = {C, l} one can fit the GP to a
set of sampled points. A good choice of such samples, such as through an acquisition procedure for
obtaining new locations is fundamental to the final performance of the GP emulation.

2.2 Acquisition procedure

The second part, the acquisition of samples with which to train the GP relies on maximizing a so
called acquisition function which, given the current GP, is a measure of the assumed information
gained by sampling at any given location. We will denote the already sampled point as the training
set in this context. As we want more precision towards the top of the mode for the final inference
steps we encode this by choosing the acquisition function

a(µ, σ|x) = 2ζ(µ(x)− pmax) + log(σ(x)) . (4)

where ζ is an empirically determined dimensional regularization factor,1 and pmax is the current
maximum log-posterior value of the training set. We introduce this current maximum, as in most
realistic cases the posterior distribution is not necessarily normalized and hence the scale of the peak
not known.

In order to make use of the massive parallelization allowed for by current scientific computing
systems, we require not a single optimal point, but a set of simultaneously-optimal sampling locations
(batch acquisition). This would in principle require maximizing a joint acquisition function (as a
function of multiple locations), which is a high-dimensional multi-modal problem. However, this
can be approximated in a simpler way by sequentially acquiring a batch of points, each conditioned
to the previous ones using the Kriging believer method [31–36]. In that method one optimizes the
acquisition function, conditions the GP on the emulated mean µ at the previous maximum (which is a
comparatively cheap operation)2 and recomputes the acquisition function using this conditioned GP.
The true posterior can then be evaluated in parallel at these locations. Throughout this paper, we call
this procedure sequential optimization.

2.3 Nested sampling

Nested sampling (NS) [37–44] is a family of Monte Carlo sampling algorithms and, simultaneously,
an integrator for probability density functions (or positive functions in general). It is based on the
idea that the marginal likelihood computation can be substituted by a one-dimensional integration:

∫
L(x)π(x)dx =

∫ 1

0

L(X)dX , (5)

where L(X) is defined as the inverse of the cumulant prior mass containing only likelihood values
greater than a given threshold λ:

X(λ) =

∫

L(x)>λ

π(x)dx . (6)

The function L(X) is then sampled in increasing order by narrowing (nested) regions that contain
only posterior values greater than this threshold. This is performed by tracking a set of live points,
and sequentially discarding the one with the lowest likelihood value and substituting it for a newly-
sampled one. The discarded point is weighed correspondingly to the estimated posterior volume
contained within the prior shell defined between the likelihood value of the discarded point and the
one of the next lowest-likelihood live point. Due to the nature of NS as an integration, Monte Carlo

1We use ζ = d−0.85, which has been shown in [25] to provide a good balance between exploration and
exploitation in a variety of dimensionalities.

2This is because only the kernel matrix changes in this step, while the hyperparameters do not need to be
refitted. Indeed, the highest cost of this operation is solely a single kernel matrix decomposition and inversion
required for future predictions on this conditioned GP.

3

Appendix

143



samples from NS produce a better representation of the dynamic range of the distribution than other
MC samplers. A review of possible implementations and application to physical sciences can be
found in [45].

In this paper, we will use the publicly available POLYCHORD code [41, 42], in particular the POLY-
CHORDLITE python wrapper available at https://github.com/PolyChord/PolyChordLite.
The advantage of using this implementation: the code is well known to allow for massively parallel
exploration of the desired function (see [42] for the weak and strong scaling), due to the use of slice
sampling to sample from constrained likelihood contours it scales mildly with dimensionality, and
due to its cluster identification algorithm it also very good at identifying global maxima even when
multiple local maxima are present (see e.g. Rastrigin example in [42]).

3 Method

3.1 Monte Carlo sampling

The basis of our method is substituting the sequential optimisation of the acquisition function using
Kriging believer by the exploitation of a Monte Carlo sample of the mean of the GP. Individual samples
are ranked according to their acquisition function, as explained below, in a way that reproduces a
conditioned ranking similar to what would be obtained via sequential optimization.

Since the target of the acquisition procedure is the optimisation of the aquisition function, it might
seem most logical to generate the MC sample directly from it. Nevertheless, there are a number of
convincing arguments in favor of sampling on the mean of the GP instead:

Speed: Predicting the GP mean and standard deviation at multiple points simultaneously is much
faster due to the possible use of vectorized matrix multiplication routines, but such vector-
ization is hard to exploit during optimization. While the prediction of the mean is a matrix
multiplication of size (Nnew, Ntrain) × Ntrain, the evaluation of the standard deviation
requires at least the matrix multiplication of size (Ntrain, Ntrain) × (Ntrain, Nnew).3 As
such, it is often times cheaper to first predict only the mean during the sampling (sequential)
and then evaluate the standard deviation. These are then used for the acquisition function
computation in a single vectorized call.

Simplicity: The acquisition function is often very multi-modal and rather difficult to sample while
the mean for a typical well-behaved likelihood is comparatively simple. This reduces the
runtime of the MC sampler (sometimes quite drastically) for a given convergence criterion
of the MC sample.

Regions of Interest: While there almost surely exist regions far away from the mode with large
standard deviations and corresponding acquisition function values, it is not always a good
idea to actually sample these. This is because the actual posterior mode defines a region
of interest where the accuracy of the GP is desired to be high, while other regions are not
necessarily important to sample. This becomes especially interesting in moderately-high
dimensionality where the volume contained by the mode becomes an ever smaller fraction
of the total prior volume. However, we stress that the nested sampling employed in this
work typically explores all regions relevant to the acquisition function in our examples –
This region of interest is thus not an entirely strict notion.

Reusability: Since the nested sampling run is performed on the mean of the GP, this is effectively
giving us a sample of the emulated posterior at this step, useful for inferring marginal
quantities (such as credible intervals, means, variances, marginal distributions, etc.).

The use of NS in particular is advantageous with respect to Markov-chain Monte Carlo methods
in this particular case: it naturally balances exploration and exploitation, since it samples the full
dynamic range of the target distribution, including its tails, where low-value-but-high-variance
optimal locations dwell; it is also almost-embarrasingly parallel up a number of processes similar to
the number of live points tracked during sampling, and, depending on implementation, has a mild
divergence with dimensionality (true for POLYCHORD).

3 There is also a trace of a matrix product, requiring additional Ntrain ·Nnew operations, but this is always
subdominant in runtime.
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After all samples have been drawn, we compute the acquisition function at these locations simultane-
ously and use the result to create a batch of new active sampling location proposals.4

3.2 Ranked acquisition pool

Instead of the sequential optimisation approach discussed in Section 2.2, we develop an algorithm
to rank the MC samples according to their acquisition function value conditioned to the rest of
the candidates, using Kriging believer, until an optimal batch of candidates is found. We call this
approach a ranked acquisition pool (RAP). To rank a set of points, we start with the sample with
the highest unconditioned acquisition as our accepted starting point. From there, we condition the
GP to the already accepted samples, and rank all other points according to their acquisition function
value conditioned to those accepted samples (i.e. compute the acquisition using the uncertainty of
the GP conditioned to the accepted samples). We include an empty slot at the bottom of the pool
for temporary sorting. Any sample in that slot will be eventually discarded. Importantly, for any
acquisition function monotonic in the GP uncertainty the conditioning can only lower the acquisition
value of a point.

We separate the algorithm of proposing a new sample into three main steps, and make use of Figure 1
to show examples for each (description in italics at the end of a step).

1. Initial rejection: A sample is only added if its unconditioned acquisition function is larger
than the lowest conditioned acquisition function. The sample d is rejected from the acquisi-
tion pool since its unconditioned acquisition function is smaller than those of samples a, b, c
already present in the pool.

2. Insertion and conditioning: If a sample is not rejected, it is initially inserted at the rank
corresponding to its unconditioned acquisition function. If it isn’t inserted at the top, it
has to subsequently be conditioned to all the points above it (which typically decreases its
acquisition function). If it is now lower than the next rank, it is inserted and re-conditioned
there. This process is repeated until it is higher than the next rank (goes to step 3), or
at the bottom of the pool and thus rejected. Sample e is proposed to the pool, and in its
unconditioned state ranks in the second position. However, after conditioning it to the first
point, it performs worse than sample b and is pushed one rank down. It is then conditioned
to the two points above it. This time, it performs better than sample c and thus is inserted
into its current position. Since its current position is the last position of the pool no resorting
is necessary.

3. Resorting: If a sample has been inserted at any rank but the lowest, all the other ranks
below are now conditioned to the wrong samples, and need to be re-conditioned and
correspondingly re-ranked. This happens in an iterative fashion, where all samples in the
current pool compete for the next highest position under the inserted sample (using the
same conditioned GP), and the highest conditional acquisition sample is inserted there.
Then the process repeats until all the slots have been filled. The element f is added to the
pool. Its unconditioned acquisition function places it at the top, and it does not need to
be conditioned. This invalidates all other ranks, necessitating a full re-sorting of the pool.
Next, all of (a,b,e) compete for the second slot by computing the acquisition function value
conditioned to the first rank (here sample b wins). Samples a and e now compete for the third
slot by computing their acquisition value when conditioned to ranks 1 and 2 simultaneously
(sample e wins).

In order to speed up especially the computations of the conditional acquisition function, the ranked
pool works with a cached model of the GP regressor instances, in order to quickly compute acquisition
function values conditioned to a certain rank (and those above it). A technical description of the
algorithm can be found in Algorithm 1.

By giving up maximization in favour of sampling, our candidates are not the true optima of informa-
tion gain, but they will be close enough to them. It is more important to get a batch of near-optimal
candidates at the same time than getting just a few perfect ones.

4The authors of [24] also perform an MC of the mean GP, but do not take care of conditioning when selecting
optimal candidates, as we do in the next section.
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Figure 1: Three insertion cases in a ranked pool of size 3, with one empty slot below it. Each
rectangular box represents a single sample. The number in the grey box represents current known
rank of the sample (? means un-ranked), the letter in the orange circles is an identifier of the points,
the number next to it is the current (conditioned) acquisition function, and the green/orange/red box at
the end shows if a point is conditioned to a given rank and those above it (number in angular brackets)
and the status of the acquisiton value (green=up-to-date, orange=newly inserted and possibly in need
of conditioning, red=invalidated by insertion at higher rank). The three cases are described in the
main text.

Algorithm 1 The ranked pool updating routine in pythonic pseudo-code.
Known: Samples X1...XN with stored conditional acquisitions a[0]...a[N ]
Require: New sample X , a(X)

▷ Rejection check
1: i← N
2: if a(X) > a[N] then
3: reject(X)
4: end if

▷ Finding the correct insertion position
5: while i>0 do
6: c = a(X)|(i− 1), ..., 1
7: if c > a[i-1] then
8: i← i− 1
9: else

10: insert(X ,i)
11: end if
12: end while

▷ Resorting + rebuilding the cache:
13: while i < N-1 do
14: for j in range(i+1,N) do
15: compute cj = a(Xj)|i, ..., 1 ▷ Update conditioned acquisitions
16: end for
17: m = argmax[ci+1, ..., cn]
18: swap(Xi+1,Xm)
19: a[i+ 1]← cm
20: end while
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Figure 2: Acquisition procedure with a ranked pool of size N = 4. The top row shows from left to
right: The true function to be emulated, the current GP mean prediction, it’s standard deviation, the
nested samples (dead points) from POLYCHORD. The bottom row shows the acquisition function
for the unconditioned GP on the left, and for the conditioned GPs in the three right panels (each
conditioned to all samples added to its left). Blue circles are current training samples, pink circles
are samples that have been accepted into the ranked pool (top), and red circles are each respective
optimal sample for the conditioned GP (bottom). Note that this example is very early in the active
sampling so the mode has not been well mapped. Nevertheless it is visible that even with very few
samples the locations of the nested samples still cover the regions of high acquisition function well.

4 Results

The combination of the nested sampling approach with the ranked acquisition pool is implemented
as NORA (Nested sampling Optimization for Ranked Acquistion), based on the GP treatment from
[25, 46] (as well as useful functionality from [47, 48]). A demonstration of the acquisition procedure
in NORA can be found in fig. 2.

We tested NORA on a number of synthetic likelihoods to demonstrate both the accuracy and the
highly parallel nature of our approach. The likelihoods for accuracy tests include a curved degeneracy,
a ring, and the multi-modal Himmelblau function. Further discussion of these synthetic examples
can be found in appendix D, while real-world applications to cosmological data can be found in
appendix E.

The curved degeneracy (see also [25, 49]) has a tight ridge in the x2 ≈ 4x41 direction, and its
log-likelihood is

logL(x1, x2) = −(10 · (0.45− x1))2/4− (20 · (x2/4− x41))2 . (7)

The log-likelihood for the ring example is instead

logL(x1, x2) = −
1

2

[
(
√
x21 + x22 − µ)2

σ
+ log(2πσ2)

]
, (8)

where µ = 1 and σ = 0.05 in our example. We show in Figure 3 that in both of these cases the
accuracy and efficiency is very comparable to the sequential method (while much more parallelizable,
see below). Both reach about the same level of agreement between emulation and the true function
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Figure 3: Comparison of the efficiency and accuracy of the acquisition procedure between the naive
sequential optimization approach and the NORA approach. We show the agreement between the
emulated and the true posterior (specified by the symmetric KL divergence) as a function of the
number of samples (posterior evaluations). The solid line is the median, and the shaded region is the
25% to the 75% quantiles of 20 realizations. In this case NORA shows similar performance to the
sequential algorithm.
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Figure 4: Same as Figure 3 for the Himmelblau function (left) and a four-dimensional extension with
4 modes in two of the dimensions (right). In the other two dimensions it is flat. In these multi-modal
cases the NORA algorithm is far more efficient than the sequential sampling algorithm.

(as captured by their symmetric KL divergence, which is further explain in appendix C). We also
investigate a multi-modal example like the Himmelblau function with log-likelihood

logL(x1, x2) = −
1

2

[
100 · (x21 − x2 − 11)2 + (x1 + x22 − 7)2

]
(9)

We furthermore construct a four-dimensional version of this function which retains the four maxima
in two dimensions but is constant along the other two dimensions. This combines the multimodality
with the problem of correctly mapping and exploring the flat dimensions. We show the results in
Figure 4. Since in this case the nested sampling has a far higher chance of quickly discovering a
mode of the function far from the already known ones, the NORA approach is much more efficient
than the Sequential optimization approach in this case (we show examples of explicit modeling for
100 posterior evaluations in Figure 5).

In order to assess that gains in modelling do not come at the cost of overhead in the acquisition
step, we have performed a number of tests in Gaussian likelihoods at different dimensionalities. The
comparison with the costs of acquisition with sequential optimization and NORA, as well as the
scaling with parallelization is shown in Table 1. We see that the overhead of NORA is comparable
to that of sequential optimization for the same number of MPI processes. However, sequential
optimization will only profit from parallelization up to the number of restarts of the optimizer while
nested sampling will parallelize virtually infinitely (up to the large number of live points).
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Figure 5: Example of a failure case of the naive sequential optimization compared to the same cases
treated with NORA, which due to its nested sampling correctly identifies all modes. The sampling
locations are shown with colour denoting how late they were sampled (yellower=later). It is clearly
visible that the sequential optimization is sampling more aggressively towards the top of the mode
and showing less explorative behaviour. Both are allowed 100 posterior evaluations.

d = 2 d = 4 d = 8

SeqOpt [2] [2.4, 2.55, 2.7] [4] [11.2, 12.1, 12.7] [8] [177, 183, 191]
NORA [2] [3.67, 3.84, 4.34] — —
NORA [4] [1.43, 1.54, 1.75] [4] [9.3, 9.9, 10.6] —
NORA [8] [0.96, 1.05, 1.13] [8] [6.29 6.58 6.90] [8] [147, 160, 220]
NORA [16] [0.30, 0.33, 0.35] [16] [4.52, 4.77, 5.16] [16] [122, 129, 171]

Table 1: Comparison of wall-clock runtimes for the acquisition step between NORA and sequential
optimization (dubbed "SeqOpt", with 5 · d restarts of the optimizer). We add in angular brackets the
number of MPI processes. In each dimensionality we show the [25, 50, 75] percent quantiles. We
run 50 runs in 2- and 4 dimensions, and 20 runs in 8 dimensions, with respective truth evaluation
budgets 20, 60 and 400. Convergence in terms of symmetric KL divergence is similar in all cases
and of magnitude O(0.01). We additionally allow multi-threading (useful e.g. for BLAS [50] matrix
operations) for each MPI process up to a total of 32 cores.

5 Conclusion

Sequential optimization for active learning is facing a variety of challenges, such as difficult paral-
lelization, and a lack of robustness to getting stuck in local maxima, thus requiring many restarts of
the optimizer in high dimensions to properly explore the target inference space. To overcome these
challenges we propose a new algorithm, called NORA, that substitutes the sequential optimization
of the acquisition function by combining Monte Carlo exploration of the GP’s mean using Nested
Sampling, and ranking of the Monte Carlo samples according to their conditional acquisition function
values, to generate a nearly optimal batch of sampling locations. These two steps can be performed in
a nearly perfectly-parallelizable way, and the same Monte Carlo sample can be reused in consecutive
iterations for lowering computational costs.

We apply NORA to a number of synthetic Bayesian inference problems to assess its performance,
and compare it to a reasonably good implementation of sequential optimisation of the acquisition
function.

We find that NORA and sequential optimization perform equally well at comparable computational
costs for simple unimodal likelihoods for d < 10, and for highly non-Gaussian likelihoods in small
dimensionalities. NORA greatly outperforms sequential optimization for multi-modal likelihoods,
due to the more exploratory approach to acquisition, despite producing less precise acquisition batches
than sequential optimization.
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The limitations of the NORA algorithm are similar to those of other approaches to Bayesian inference
based on surrogate GP models: Their strong divergence with dimensionality due to the increasingly
large number of training points needed for good posterior modelling, and the O(n3) scaling when
fitting of the hyperparameters of the GP (see also [51]). Furthermore, one particular shortcoming
of NORA compared to sequential optimization is that due to its less aggressive acquisition it will
converge later in simple problems, e.g. Gaussian likelihoods. Our methodology also does not address
the problem of stochastic likelihood evaluations (see [27]).
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A Description of the surrogate model

In this section we describe details of the GP surrogate model (see also [25] for a detailed description).

A.1 Choice of kernel function

On top of the choice of the kernel function itself, as defined in Equation (3), some knowledge of the
target function is also incorporated in the priors for the hyperparameters. Our assumption is that the
length scales should be of an order of magnitude close to that of the posterior modes, while the latter
would be of an order of magnitude not much smaller than that of the prior ranges for the parameters
of the posterior. We express this belief by setting the prior of the length scales to being uniform
between 0.01 and 1 in units of the prior length in each direction. This condition assumes that the
size of the mode is larger than about 1/100th of the prior width in each dimension, which we find
reasonably permissive. The prior of the output scale C is chosen to be very broad and allows for
values between 0.001 and 10000. The d+ 1 free hyperparameters θ ≡ {C, li} are then chosen such
that they maximize

− log p(y|X, θ) =
1

2
yT (k(X,X) + σ2

nI)
−1y +

1

2
log |k(X,X) + σ2

nI| −
Ns

2
log 2π . (10)

where σn is a small noise parameter that typically improves numerical stability of the matrix inversion.

A.2 Parameter space transformations

To ensure numerical stability we use a number of transformations during the modelling with the GP:

Firstly, we sample the log-posterior distribution to reduce the scale of the function that the GP
interpolates. Furthermore, the characteristic length scale of isotropic kernels tends to be larger when
sampling the log-posterior, which implies that the GP surrogate generalizes better to distant parts of
the function, making the GP more predictive.

In addition, at every iteration of the algorithm, we internally re-scale the modeled function using the
mean and standard deviation of the current samples set as

log p̃(X) =
log p(X)− y

sy
, (11)

where y and sy are the sample mean and standard deviation respectively. This re-scaling acts like a
non-zero mean function, causing the GP to return to the mean value far away from sampling locations.
This in turn encourages exploration when most samples are close to the mode and exploitation when
most samples have low posterior values.

As for the space of parameters x, we transform the samples such that the prior boundary becomes a
unit-length hypercube. This usually leads to comparable correlation length scales of the GP across
dimensions, which increases the effectiveness of the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS-B) constrained optimizer [52], used to optimize the GP hyperparameters.

B Some details of the algorithm

Active-sampling Bayesian inference algorithms based on surrogate models in the literature [19–28]
usually follow a fixed procedure: after an initial batch of training samples is either provided or drawn
from the prior, the algorithm iterates on a cycle of (1) optimising an acquisition function to obtain
candidates for evaluation of the true posterior, (2) evaluation of the true posterior at the proposed
locations, (3) refitting of the surrogate model, and (4) convergence checks. In this study we do not
concern ourselves with the initial proposal (in our case sampled from the prior) or the convergence
checks (in most examples we have fixed budgets of how many true posterior points are sampled),
since the focus of this study is on the acquisition step.

As discussed in the main text, our acquisition procedure has two steps: first the mean GP is explored
using nested sampling, and, second, the resulting MC samples are ranked according to their condi-
tioned acquisition function value. In this short appendix, we discuss some particularities of these
procedures.
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B.1 Scaling of Nested Sampling precision parameters

The two fundamental parameters of a nested sampler are the number of live points, and the fraction
of the total posterior mass (evidence) contained in the final set of live points. Additional parameters
depend on the particular implementation of NS. In POLYCHORD, our sampler of choice, the afore-
mentioned parameters are called respectively nlive and precision_criterion. In addition, and
among others, POLYCHORD has two more important parameters: the length of the slice-sampling
chains (num_repeats), and the size of the initial prior sample from which the live points are extracted
(nprior). It is a natural choice that in the early stages of learning, where limited precision when op-
timising the acquisition function is enough, this would translate in our procedure into lower precision
settings for POLYCHORD. To reflect this, we scale the number of live points to be proportional to
the number of points in the training set (by a factor of 3 by default), with a cap equal to the default
precision criterion of POLYCHORD, which is 25 times the dimensionality of the problem. On the
other hand, we have found that the accuracy of our algorithm benefits from more accuracy than
the default for the length of slice chains (num_repeats, 5 times the dimensionality instead of 2),
whereas the evidence fraction contained in the live points (precision_criterion) can be relaxed
with respect to the default by a factor of 5, since we are not interested in an accurate calculation of
the model evidence.

B.2 Byproducts of Nested Sampling

The nested sampling step produces both a MC sample and a calculation of the evidence of the model.
The first one is a useful by-product, which can be used for inference once the run has converged, or
to implement a global convergence criterion, such as one based on the calculation of KL divergences
between iterations. The value of the evidence is also a useful output, in particular to define a further
convergence criterion, but it needs to be taken into account that the resulting NS uncertainty does not
include the uncertainty due to the probabilistic nature of the GP, or the uncertainty over the choice of
hyperparamenters values, as Bayesian Quadrature approaches do.

B.2.1 Parallelization

Nested samplers parallelize effectively up to the number of live points (nlive), since parallel
evaluation of the target function increases the chance that at every iteration an acceptable sample
will be found at the cost of a single evaluation. Since this number is usually a few tens of times the
dimensionality, this step of our algorithm will effectively parallelize linearly with the number of
simultanous processes. POLYCHORD does not do vectorized evaluation of the target function, i.e. the
target function is always called with a single argument. Hence for this step we prefer to invest CPU
cores into separate MPI processes, as opposed to multiple threads.

The ranking step of the algorithm when running NORA in parallel occurs in two steps: first the
MC sample is split in as many equal parts as running processes, for evaluation of the GP standard
deviation and the acquisition function value, and the individual ranking of each subset into ranked
pools with as many points as the desired Kriging believer steps; and later all the ranked pools are
combined an re-ranked in a single process. The first of these two steps can be effectively parallelized,
but the second one is not parallelizable by definition, and may at most benefit for multi-threading.
In most situations, unless the size of the training set is very large, the first step is costlier and thus a
larger number of MPI processes is more beneficial than a larger number of threads per process.

Finally, the evaluation step occurs always in parallel when MPI processes are available, but its
parallelization is limited by the number of Kriging believer steps we have decided to take. This number
must be kept in check because the quality of the batch of proposals decreases when conditioning on
increasingly bad information, making our model larger and more computationally expensive. We
have found that a number of Kriging believer steps equal to the dimensionality is a good choice in
most cases. Highly multimodal posterior can benefit from larger number of Kriging beliver steps,
since their acquisition functions have more local maxima, but it would not be wise to go beyond a
few times the number of dimensions. Thus, the evaluation step benefits from the number of MPI
processes in a limited way, and may be faster if more cores are left available for multi-threading, thus
accelerating the evaluation of the true posterior.

The difference between the acquisition step benefiting from a large number of MPI processes, and the
evaluation step potentially benefiting more from a large number of threads, makes the choice of the
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ratio of MPI processes to threads per process dependent on the speed of the evaluation step and the
overhead costs, which scale with dimensionality: fast true posteriors in high dimensionality call for
larger number of MPI threads, and very slow posterior with an implementation that benefits from
multi-threading would call for a larger amount of threads and a smaller amount of MPI processes. In
the future, we will look at substituting POLYCHORD by a nested sampler that can perform vectorized
calls to the target function, in order to make multi-threading an overall better choice, beyond the
small necessary MPI parallelization for Kriging believer.

C Kullback-Leibler Divergences

We define the Kullback-Leibler (KL) divergence of the continuous probability distribution P with
respect to Q with probability density functions p(x) and q(x) as

DKL(P ||Q) =

∫
p(x) log

(
p(x)

q(x)

)
dx . (12)

The KL divergence as defined above more strongly weighs disagreements between the two probability
distributions where p(x) is large. Since we want the approximation to be equally accurate in all
regions where either distribution is large, we use a symmetrized version of the divergence (often
called Jeffreys divergence). It is defined as

Dsym
KL (P,Q) =

1

2
(DKL(P ||Q) +DKL(Q||P )) . (13)

A smaller value means that the two posteriors are in better agreement, and one typically wants
Dsym

KL (P ||Q)≪ 1 for good agreement. The dimensionality consistency of the KL divergence guaran-
tees that a given value for the divergence characterizes similar differences across dimensionalities.

To compute the KL divergence explicitly, one can use the fact that the points in a Monte Carlo
sample of P are distributed as p(x)dx. One can thus approximate the integral as a sum of the
quantity log p(xi) − log q(xi) over all points in the MC sample (multiplied by their respective
weights/multiplicities). This can be done by evaluating either the real model or the GP emulated
posterior for the given points.

There also exists a Gaussian approximation for the KL divergence which is particularly useful when
computing the true log-posteriors at each point of the MC sample is computationally undesirable
(such as the cosmological examples below). It is defined as

DKL(P ||Q) ≈ 1

2

(
tr
(
C−1

Q CP

)
− d+ (mQ −mP )

TC−1
Q (mQ −mP ) + log

(
detCQ

detCP

))
.

(14)
with CQ and CP being the respective covariance matrices of the two probability distributions, while
mQ and mP are the respective means. While the approximation of the individual distribution as
multivariate Gaussian is certainly incorrect in non-Gaussian cases, it is typically the case that a
good agreement of the Gaussian KL signals a good compatibility of the true KL as well. We always
compute the true symmetric KL unless explicitly stated otherwise.

D Test functions

Here we comment further on the test functions presented in Section 4 of the main text.

Figure 6 and Figure 7 show exemplary corner plots of the examples used in Section 4. In all three
multi-modal cases presented in that section, NORA correctly recovers the contours.

In Section 4 we also presented a study of the parallelization of the overhead costs of NORA. In this
context, in Figure 8 we show comparisons in convergence between NORA and sequential optimization
for Gaussians drawn with random correlations in 2, 4 and 8 dimensions. For these very easy-to-model
functions NORA converges as fast as sequential optimization. The slightly slower convergence in
d = 8 is likely due to the somewhat more exploratory behaviour of NORA compared to sequential
optimization.
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Figure 6: Example of inference on the 4d Himmelblau example. The four modes are in the x1-x2
direction while the other two directions are flat. The example shows NORA sampling with a budget
of 200 posterior evaluations. Both contours are in good agreement with each other.
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Figure 7: Example of inference on the curved degeneracy example (left) and the ring (right). NORA
correctly recovers both contours. Both runs have been performed with a budget of 80 posterior
evaluations.
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Figure 8: Comparing convergence of NORA vs. Sequential optimization for randomly drawn Gaus-
sians in 2, 4, 8 dimensions. NORA and sequential optimization perform nearly equally well for these
easy-to-model likelihoods.

E Cosmological examples

In order to test the applicability and robustness of the NORA implementation to real-world examples,
we also apply it to a number of inference runs commonly used in cosmology. In particular, we
use the Planck 2018 temperature, polarization, and lensing data (using the nuisance-marginalized
’lite’ version, as described in [53, 54]), and consider either a model of a curved universe (ΛCDM
+ Ωk) or a model with sinusoidal variations of the primordial power spectrum, similar to [55, Sec
7.1.1]. For the ΛCDM baseline model in both cases we adopt the common 6 cosmological parameters
{ln(1010As), ns, H0,Ωbh

2,Ωcdmh
2, τreio} and adopt a single massive neutrino with mass 0.06eV

(see [56] for a more detailed description of this baseline model).

We show in Figure 9 the results for a model of a curved universe, an extension of the ΛCDM model
described above with an additional seventh parameter Ωk representing the energy density-equivalent
of the curvature. It presents a particularly strong degeneracy between the curvature parameter Ωk and
the Hubble constant H0. We observe that the contours are in good agreement (Dsym,Gaussian

KL = 0.08
using the Gaussian approximation of Equation (14)).

Next we try to fit a sinusoidal oscillation with three parameters (amplitude, wavelength and phase) to
the primordial power spectrum of Planck 2018, fixing the parameters of the ΛCDM model. This is a
low-dimensional problem, but with a highly multi-modal behavior in the frequency and phase of the
oscillation, since we are effectively fitting experimental noise. The result can be seen in Figure 10:
most of the distribution is well recovered, despite its complexity.

F Reproducibility

The NORA implementation and all scripts required to reproduce the tests will be released after review
of this manuscript.
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Figure 9: Inference of the cosmological parameters of the Planck 2018 likelihood (Planck lite) with
curvature Ωk sampled in addition. NORA correctly recovers the contours with only 903 evaluations
of the likelihood function.
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2018 CMB sky constrained by NORA, and the reference Nested Sampling results with PolyChord.
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Source inference for deterministic gravitational waves is a computationally demanding task in
LISA. In a novel approach, we investigate the capability of Gaussian Processes to learn the posterior
surface in order to reconstruct individual signal posteriors. We use GPry, which automates this
reconstruction through active learning, using a very small number of likelihood evaluations, without
the need for pretraining. We benchmark GPry against the cutting-edge nested sampler nessai,
by injecting individually three signals on LISA noisy data simulated with Balrog: a white dwarf
binary (DWD), a stellar-mass black hole binary (stBHB), and a super-massive black hole binary
(SMBHB). We find that GPry needs O(10−2) fewer likelihood evaluations to achieve an inference
accuracy comparable to nessai, with Jensen-Shannon divergence DJS ≲ 0.01 for the DWD, and
DJS ≲ 0.05 for the SMBHB. Lower accuracy is found for the less Gaussian posterior of the stBHB:
DJS ≲ 0.2. Despite the overhead costs of GPry, we obtain a speed-up of O(102) for the slowest cases
of stBHB and SMBHB. In conclusion, active-learning Gaussian process frameworks show great
potential for rapid LISA parameter inference, especially for costly likelihoods, enabling suppression
of computational costs without the trade-off of approximations in the calculations.

I. INTRODUCTION

In the last decade, the direct detection of gravitational
waves (GWs) has transformed from a remarkable, singu-
lar accomplishment into a routine procedure. Currently,
the LIGO-Virgo-KAGRA collaboration has observed ap-
proximately a hundred systems emitting GWs in the 10
– 1000Hz frequency range [1]. Moreover, pulsar timing
array experiments are possibly on the verge of gathering
enough statistics to announce the first direct detection
of GWs in the nHz range [2–5]. Gravitational waves in
the mHz frequency range remain unobserved. LISA, with
construction commissioned now and launch scheduled in
a decade, is set to delve into this uncharted territory [6].

LISA poses data analysis challenges that are radically
different from those of the other GW experiments, as it
is a signal-dominated one, expected to observe a mul-
titude of Galactic binaries, supermassive BHBs, EM-
RIs, and stellar-mass BHBs constantly populating the
datastreams [6]. A primordial stochastic gravitational
wave background (SGWB) as loud as the astrophysical
sources might also be present [7]. To further compli-
cate things, the zoology of LISA signals does not admit
a common detection and reconstruction strategy: within
the experiment’s lifetime, some sources are monochro-
matic, others slowly drift, and others move fast outside

∗ jonas.e.elgammal@uis.no

the LISA frequency sensitivity. Analyzing the data in
time chunks makes the identification of the long-duration
sources more difficult, while keeping the whole datas-
tream a priori makes the likelihood evaluations too heavy.
On the other hand, splitting the data into frequency in-
tervals is suitable for monochromatic sources [8], less so
for those that are largely chirping. Despite their dif-
ficulty, these challenges must be solved to achieve the
groundbreaking science promised by LISA [7, 9, 10].

Concerning the likelihood evaluation cost, several im-
provements are conceivable (see e.g., [11] for a review):
speeding up waveform evaluation (e.g., through hard-
ware acceleration or approximation schemes) [12–14], by-
passing the likelihood evaluation (e.g., using simulation-
based inference methods (SBI) [15–22]), or building sur-
rogates of the likelihood function itself [23, 24]. In this
paper, we focus on the latter, while agnostically retain-
ing the waveform content and the signal Bayesian model
intact. Thus, no approximation is made to either the
Fourier transforms of the modeled signals or the likeli-
hood computation.

Instead, we adopt the machine learning framework im-
plemented in GPry [25, 26]. Within it, we interpolate the
posterior with a Gaussian process [27], trained on a small
number of evaluations that are sequentially proposed in
an optimal way to minimize their number [28, 29]. As
we will see, this approach can produce accurate infer-
ence with O(10−2) fewer likelihood evaluations than tra-
ditional Monte Carlo approaches. This translates into a
speed-up of inference by a factor of 100 in the regime in
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which the overhead of GPry is subdominant, i.e., when
the likelihood evaluation time is over a few seconds, and
the dimensionality of the problem is O(10). The output
is a surrogate model for the posterior that can be sampled
with a Monte Carlo algorithm at virtually zero cost.

Within the general context of machine-learning accel-
erated inference of GW sources, the likelihood-based,
active-learning approach taken by GPry differs from the
likelihood-free, amortized approaches such as SBI in a
number of ways: a) amortized approaches are much faster
at the point of inference, in exchange for some costly
pre-training, whereas the more expensive active-learning
frameworks can be run with no upfront costs for varia-
tions of data or waveform modelling; b) likelihood-based
approaches do not necessitate the simulated data to con-
tain stochastic noise, and possess a direct way to evalu-
ate goodness-of-fit. Both approaches are complementary
and can thus coexist in the LISA parameter inference
pipeline. To estimate the benefits for LISA of a machine
learning framework similar to the one just described, we
use GPry to perform parameter inference on some bench-
mark LISA signals simulated through Balrog, and com-
pare the speed and accuracy of the results to those ob-
tained with the state-of-the-art nested sampler nessai.

The paper is organized as follows: in Sec. II A we de-
scribe the target sources of our study: a supermassive
black-hole binary (SMBHB), a stellar mass black hole bi-
nary (stBHB) and a Galactic double white dwarf (DWD)
system; in Sec. II B we compare the waveform modeling
available in literature; in Sec. II C we briefly describe the
inference scheme, for individual source parameter estima-
tion in the three source scenarios previously mentioned;
in Sec. III A we present previous approaches for exact or
approximate inference, and how they can be used as a
starting point for our pipeline; in Sec. III B we briefly
introduce how our algorithm models a posterior using a
Gaussian process interpolator; in Sec. III C we detail how
we perform, evaluate and compare our inference runs; in
Sec. IV we present our results for the three source types
above, and compare GPry and nessai on performance
and accuracy; in Sec. V we draw conclusions and outline
possible future developments.

II. SOURCES

A. Source types

We explore three different source classes, roughly cat-
egorized by their signal spectral content. Double white
dwarfs (DWDs) are observed by LISA during their early
inspiral, emitting quasi-monochromatic GWs largely de-
tectable within the Galactic neighborhood [30–32]. Each
signal persists in the LISA datastream for the entire mis-
sion, Doppler modulated by the satellite-constellation
orbital motion within a very narrow frequency band
(∆f/f ≤ 10−4). For DWDs emitting above approxi-
mately 2mHz, the GW-driven orbital tightening reaches

a frequency evolution ḟ ≳ 10−15 Hz2 which LISA can
measure over the nominal mission duration TLISA =
4yr. As many as 107 DWD sources are expected to
emit in the LISA band, with up to 1% individually de-
tectable. They are unambiguously the most numerous
deterministic sources expected for LISA, and their col-
lective brightness makes its datastream strongly signal
dominated below a few mHz. The brightest of these
sources are identifiable after a few months [33], once a
sufficient phase coherence emerges from the noisy datas-
tream. In most of the available literature, a phenomeno-
logical parametrization of their signal is preferred over a
physically-motivated one. Waveform models accurately
taking into account the LISA response [34, 35] are typ-
ically fast, often leveraging frequency domain represen-
tation and heterodyning. It is uncertain whether such
advantages will be retained in more realistic data anal-
ysis setups (see, e.g., [36], for recent developments on a
frequency domain treatment of gaps).

stBHBs are the second class of sources we consider.
They are expected to populate the whole LISA spec-
trum, the largest majority slowly drifting in frequency
within the LISA mission duration. Only a handful of
them will exit the band on its upper end in less than a
year and eventually merge in the ground-based detector
frequency band (10Hz to 1 kHz) [37, 38]. Their wave-
forms are comparatively more complex than the DWD
ones, with a parameter space equipped to describe ec-
centric, precessing, unequal-mass binaries [39, 40]. The
in-band persistence of DWD and stBHB signals allows
for a coherent integration of the data over millions of cy-
cles during the nominal mission duration, making their
detection heavily phase dominated.

Finally, we consider SMBHBs as the third category of
GW sources: they are the most massive binaries expected
to emit GWs in the LISA band. In the lifetime of the
mission, SMBHBs will be detected as transient signals
reaching signal-to-noise ratios (SNRs) as large as ∼ 103,
therefore being the loudest individual sources among the
LISA ones. SMBHBs rapid evolution towards merger in
band makes them prototypical to excite GW higher mul-
tipole modes, spin-precession [41]. However, orbit cir-
cularization [42] prevents from measuring large orbital
eccentricities. State-of-the-art waveform models are phe-
nomenological ones, calibrated against numerical relativ-
ity simulations with mass-ratios up to 1:18 [43]. Their
computational efficiency is granted by decades of wave-
form developments for ground-based detectors, though
the signal brightness questions the level of accuracy re-
quired to achieve unbiased parameter estimation [44].
The broadband nature of SMBHBs waveforms makes
them the most expensive to compute in frequency do-
main (only second to extreme mass ratio inspirals), with
up to 105 datapoints required for the lightest, most dis-
tant sources merging at about 10mHz. Even though
time-domain truncation may reduce the number of fre-
quencies to evaluate the waveform at, advanced global
inference schemes (e.g. Gibbs-like sampling or SBI tech-
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niques) may require the usage of conditional data with
full-resolution frequency series.

B. Signal model

We model LISA data d as the linear superposition of
noise n and signal s. Observations are collected through
time-delay-interferometric variables, synthetic time series
constructed from suitable delayed combinations of single-
link inter-spacecraft laser phase measurements [45]. For
simplicity, we assume the three LISA satellites orbiting
in an equilateral triangular configuration with constant
armlength of 2.5 × 109 m. Under such an approxima-
tion, the three interferometric variables, often referred to
in literature as X,Y, Z, are linearly combined into the
A,E, T variables, such that the respective noises are un-
correlated.

We model the GW strain emitted from a distant DWD
as a quasi-monochromatic signal. Its two polarizations
are described by

h+(t;θ) = A(1 + cos2 ι) cos(2πfGW(t)/Hz− ϕ) , (1)

h×(t;θ) = −2A(cos ι) sin(2πfGW(t)/Hz− ϕ) , (2)

where A denotes the GW amplitude, ι represents
the source inclination with respect to the line-of-sight,
fGW(t) is the instantaneous GW frequency measured in
the solar system barycenter frame, and ϕ is the binary
orbital phase at the time t0 at which LISA observations
start. The amplitude A can be expressed as

A =
2(GMc)

5/3

c4dL
(πf)2/3, (3)

while, to leading order, fGW(t) reads

fGW(t) = f + ḟ(t− t0) , (4)

with f and ḟ being the orbital frequency and its (solar
system barycenter frame) time derivative at time t0, re-
spectively. In Eq. (3), dL denotes the source luminosity
distance whose redshift is z, and Mc denotes the chirp
mass

Mc =
(m1m2)

3/5

(m1 +m2)1/5
, (5)

for a binary system of two component masses m1 and
m2. Eq. (5) is frame-invariant, however we consider only
solar system barycenter frame quantities hereafter.

The LISA detector response introduces an additional
dependence upon the source position in the sky. We
parametrize it by the source Ecliptic latitude b and longi-
tude λ, and an overall polarization angle ψ. For inference
purposes, we also reparameterize ϕ, ψ with two circular
initial phases ϕL = ϕ+ ψ and ϕR = ϕ− ψ, respectively.

We assume the DWD source orbital evolution to be
GW driven when injecting it into LISA data. Therefore,

the injected f and ḟ must satisfy the constraint

ḟ =
96

5

(GMc)
5/3

πc5
(πf)11/3 . (6)

However, we infer f and ḟ as free independent param-
eters. Due to the signal being narrowband and at a
much lower frequency than the LISA data sampling rate
(fs = 0.2Hz), we speed up likelihood evaluations through
heterodyning, filtering, and downsampling, resulting in a
few hundred of datapoints per waveform evaluation.

Concerning stBHBs, we model their GW signal by fol-
lowing [46] where the waveform is computed through an
adiabatic inspiral post-Newtonian expansion. As stB-
HBs drift much faster than DWDs in the LISA fre-
quency band, their waveform exhibits (mild) sensitivity
to the component massesm1,m2 and dimensionless spins
χ1, χ2. For simplicity, we consider aligned-spin systems
in circular orbits only, leaving the investigation of eccen-
tric, precessing ones for future work. We reduce inference
correlations with a convenient physical parameterization
through the binary chirp mass Mc, reduced mass ratio
δµ = (m1 −m2)/(m1 +m2), and component dimension-
less spin magnitudes χ1,2; its initial orbital frequency f0,
and left- and right-handed phases ϕL, ϕR. The extrinsic
parameters are decomposed as follows: the source po-
sition and inclination are parameterized by the square
root of two circular amplitudes AL,R = (1±cos ι)/

√
2dL,

the sin-ecliptic latitude sinβ, and longitude λ. TDIs are
constructed through a rigid adiabatic approximation [47].
In previous work [46], waveforms were evaluated only
at a few hundreds of points, employing Clenshaw-Curtis
quadrature to approximate the likelihood in Eq. (7). This
was made possible by analyses of noiseless data, whose
smoothness allows for such an integration scheme. In
turn, in this work we focus on noisy data, and hence we
use the full GW frequency content, resulting in around
104 data points per waveform.

Finally, SMBHBs signals are described through
phenomenological, numerical-relativity calibrated wave-
forms, as implemented in IMRPhenomXHM [48]. This
waveform family smoothly captures the inspiral-merger-
ringdown structure of a binary merger signal in frequency
domain, accounting for higher-modes emission. Despite
being extremely fast, thanks to decades-long optimiza-
tion for current and future ground-based detectors [49],
the LISA frequency resolution makes the waveform array
typically long: in this study we consider a system emit-
ting up to 3.5mHz, reaching its merger τm = 4.138×106s
after the start of the mission. We do not consider any
time-domain truncation scheme, and model the signal at
the highest frequency resolution available. The signal is
parameterized by the binary chirp mass, its reduced mass
ratio, the component dimensionless spin magnitudes (as-
sumed aligned with respect to the angular momentum),
the time-to-merger τm, the luminosity distance dL, the
sine-ecliptic latitude sinβ and ecliptic longitude λ, the
cosine inclination cos ι, the initial orbital phase ϕorb0 , and
the polarization angle ψ. All quantities are defined in the
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solar system barycenter frame, and non-conserved ones
are defined at a reference frequency fref = 10−4 Hz.

Throughout this work, we assume perfectly known,
Gaussian, instrumental noise [50], superimposed on like-
wise perfectly known, Gaussian, confusion noise, whose
level is modeled as in [51] as a function of TLISA. In the
larger context of global fit pipelines, this is equivalent
to performing inference on the three chosen sources af-
ter all resolvable ones have been identified and perfectly
subtracted from the data. We further simplify the two
noise models assuming both zero mean and perfectly sta-
tionary, thus reducing their entire description to simple
power spectral densities [50].

C. Likelihood

Given the assumptions detailed in Sec. II B, the likeli-
hood of observed data dk = A,E, T in frequency domain
reads

logL(d|θ)=−
∑

k

⟨dk−sk(θ) | dk−sk(θ)⟩k
2

+ const. (7)

where dk denotes the superposition of noises realizations
and each injected signal as described in Table I, II, and
III, respectively. Thanks to the stationarity of noise in
each datastream and uncorrelatedness across them, the
inner product is simply given by

⟨x | y⟩k = 4Re

∫ +∞

0

df
x̃(f)ỹ†(f)
Sn,k(f)

. (8)

Finally, sk(f ;θ) denotes a proposed GW signal with pa-
rameters θ, as observed in the k-th datastream, and Sn,k

the noise power spectral density in the same datastream.
We characterize the overall source brightness with the
SNR, defined as

SNR2 =
∑

k=A,E,T

⟨sk(f ;θ) | sk(f ;θ)⟩k . (9)

In this study, we present two approaches to obtain pos-
terior samples for each inference, according to

p(θ|d) ∝ L(d|θ)π(θ) , (10)

where π(θ) denotes the prior assumption θ. In Sec. IIIA
we detail the construction of priors for each source cate-
gory, which we assume to be uniform over the prescribed
ranges.

III. INFERENCE

A. Setting priors

Pre-constraining the parameter space of the inference
problem down to a region around the location of the

bulk probability mass, henceforth referred to as “mode”,
makes surrogate-posterior approaches such as GPry sig-
nificantly faster and more robust. This can usually be
achieved with methods that avoid the evaluation of the
expensive posterior, via e.g. approximations in the likeli-
hood, template matching with an approximate waveform
or machine-learning forward modeling [12, 14, 52]. These
methods can produce rough estimates of the location and
span of the posterior mode at a very low computational
cost.

The DWDs live in a narrow frequency band and can
be initially constrained using frequentist triggers with a
sliding-window method that scans the frequency domain.
Additionally, by using an optimizer, it is possible to ob-
tain a maximum likelihood estimate (MLE), and an esti-
mate of the Fisher information matrix. In combination,
these methods allow the setting of priors that sufficiently
encapsulate the mode of the posterior distribution, as
done in [8]. Since the DWD are mostly a test case for
our study, we set conservative priors by hand, encapsu-
lating ∼ 10σ for each unbounded parameter.

or stBHBs our approach to pre-constraining the pa-
rameter space is the one introduced in [53] and success-
fully applied to LISA data in [54]. This method employs
a semi-coherent search combined with Particle Swarm
Optimization (PSO) to efficiently scan the large param-
eter space involved. The semi-coherent approach divides
the data into frequency-domain segments, analyzing each
individually, and then combining the results. This tech-
nique balances sensitivity and computational efficiency
by widening the posterior distribution over the parame-
ter space, thus helping to locate the posterior bulk.

The path traced by the particles in the PSO can then
be used to find regions in the parameter space with high
posterior density values. For our stBHB analysis, we use
a subset of 5000 samples from the PSO paths, obtained
from 256 data segments, and evaluate the posterior in
Eq. (10) at these locations. We then restrict the prior
to the smallest hyper-rectangle containing PSO posterior
samples within a 10σ confidence region from the peak, as-
suming a multivariate Gaussian distribution as the pos-
terior distribution (for a detailed discussion, see App. A
of [25]). In addition, we use a small set of these samples
close to the top of the mode as an initial training set
for GPry. Together, the shrunken prior and the initial
training set eliminate the need to explore the parame-
ter space and let GPry focus on mapping the mode, thus
combining the strengths of both approaches: a fast initial
exploration of the parameter space by the PSO followed
by GPry which maps the mode with very few evaluations
of the relatively slow-to-evaluate posterior distribution.
The PSO search takes O(10min), adding only very little
overhead to our pipeline. We perform the initial PSO on
noiseless data to introduce an additional bias beyond the
one arising from their segmentation.

For the less explored case of SMBHBs, we assume that
a similar PSO approach, a neural-network or a frequentist
one can be used to approximate the mean and covariance
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of the posterior mode (see, e.g., [52, 55]).
Due to the simpler structure of the posterior, we can

set a larger uniform prior covering > 10σ in each dimen-
sion. As a proxy for a search, we generate Monte Carlo
samples of the noiseless posterior distribution and use its
mean and covariance to draw a set of 35 samples from
a multivariate Gaussian distribution. GPry is initialized
with these samples which are close to the top of the mode
but biased. If multimodalities are present, as is expected
in the sky location for low latency searches [56–58], GPry
would be initialized with points from all modes.

B. Gaussian process posterior interpolation

The inference algorithm employed in this study uses a
Gaussian process regressor (GPR) to create an approx-
imate model of the posterior density function, using a
small set of evaluations performed at optimal locations.
This approximation is then used as a surrogate model
from which we can draw, at very low computational cost,
Monte Carlo (MC) samples that very closely resemble
samples from the true posterior. Contrary to amortized
machine learning-based approaches such as SBI, our sur-
rogate model is built sequentially at runtime (an ap-
proach known as active learning), and does not rely on
previous training. GPry’s approach is more closely related
to variational inference (see, e.g., [59]), with the differ-
ence that GPry does not need derivatives of the posterior.
As we will see, the necessary number of evaluations of the
GW signal likelihood is at least O(10−2) smaller than
those needed by nessai (which is already more efficient
than traditional Nested Sampling implementations).

We use GPry [25, 26, 60] to construct such a surro-
gate model. In this subsection, we adopt the notation
most commonly used in the context of Gaussian pro-
cesses where x refers to a vector in the sampling space
(equivalent to θ above) and y is the value of the target
function. GPry iteratively proposes points x in parameter
space at locations where the expected gain in information
about the posterior is maximized. With them, at every
iteration, it builds an approximation of the posterior log-
density function log p(x|D) under some data D as the
mean of a Gaussian process conditioned on the current
set of training samples (X,y), where X = {x(i=1,...)} and
y = {log p(x(i=1,...))}:

log p(x|D) ∼ GP(0, k(x,x′)|X,y) . (11)

Here k(x,x′) represents the covariance function, for
which GPry uses a d-dimensional inverse-squared Ra-
dial Basis Function (RBF) kernel allowing for a different
length-scale in each dimension of the sampled parameter
space:

k(x,x′) = C2
d∏

i=1

exp

(
(xi − x′i)2

2l2i

)
, (12)

with C and l representing, respectively, the output and
length scales of the Gaussian process. The null mean
of the Gaussian process prior in Eq. (11) applies to a
transformed set of y log-posterior values so that they
have null mean and unit standard deviation. Hereon we
drop the explicit dependence on the training data X,y.

The mean of the conditioned Gaussian process, with
which we approximate the log-posterior density, is com-
puted as

µ(x∗) = kT
∗ (K+ σ2

nI)
−1y , (13)

where (k∗)i = k(x(i),x∗), (K)ij = k(x(i),x(j)), and σ2
n is

an estimate of the numerical uncertainty of log-posterior
values. The standard deviation of the conditioned Gaus-
sian process, used in the acquisition function defined be-
low, is σ(x) =

√
diag(Σ(x)), where

Σ(x∗) = k(x∗,x∗)− kT
∗ (K+ σ2

nI)
−1k∗. (14)

The hyperparameters of the kernel, i.e., its output and
length scales, hereon denoted collectively as Λ, are deter-
mined by maximizing their marginalized likelihood [27].
The mean and standard deviation of a Gaussian process
conditioned on a set of training samples can be seen in
the upper row of Fig. 1.

Optimizing the kernel hyperparameters Λ eventually
dominates the overhead of the algorithm, as it requires
multiple kernel matrix inversions that scale as O(N3),
with N being the number of training samples. In order
to mitigate this, we only perform a full re-fit of the hyper-
parameters at every few iterations of the algorithm (see
Appendix B). In general, overhead costs start making
GPry an impractical approach for dimensionalities larger
than a few tens, depending on the cost of the likelihood.
The number of training samples, which drives the over-
head costs, needed for accurate posterior reconstruction
depends on the dimensionality of the problem. In ex-
change for this overhead, GPry reduces the number of
posterior evaluations required with respect to traditional
samplers by a factor of O(102). Therefore, GPry’s ad-
vantage in performance increases for low dimensions and
large costs per posterior evaluation. An approximate rule
of thumb is that GPry is faster for dimensionalities lower
than a few tens when the posterior evaluation time is
O(1 s) or higher.

As a further refinement of the surrogate model, we
multiply the GPR by a Support Vector Machine (SVM)
classifier, of comparatively negligible computational cost,
trained both on the evaluations used for the GPR, and
those rejected because their log-posterior density is ei-
ther negative infinity or very low with respect to the best
training point. This SVM is used to partition the param-
eter space into regions in which the true log-posterior is
expected to return a finite, or negative infinity value; the
latter is used as an exclusion region where future candi-
dates are automatically rejected without evaluating their
true log-posterior.
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FIG. 1. Simplified illustration of the GPry algorithm on a 1-dimensional Gaussian mixture test function. Each column,
corresponding to consecutive iterations, shows on the top the true target log-pdf (dashed), the current set of evaluations (black
points), and the current GPR model mean from Eq. (13) (blue, solid) and 95% confidence interval defined by Eq. (14) (blue,
shaded); the bottom panel shows the current acquisition function values from Eq. (15), whose maximum (dotted orange) will
be proposed for evaluation for the next iteration. Not illustrated are more complex aspects of the algorithm, such as the batch
proposal of points [25], and the procedure to obtain approximate maxima of the acquisition function [26].

To enable active sampling, we introduce an acquisition
function, denoted as a(x), which guides the sampling pro-
cess by quantifying the expected utility of sampling the
true posterior at each point in the parameter space:

a(x) = exp (2ζ · µ (x)) (σ(x)− σn) , (15)

ζ is a scaling factor that balances exploration and ex-
ploitation. The learning efficiency is maximized when
this scaling factor is made dimensionality-dependent, in-
creasingly encouraging exploration for larger dimension-
alities: ζ = d−c, with c > 0 [25]. In this paper, we
empirically set this scaling factor to ζ = d−0.65, promot-
ing exploitation slightly more than the value derived in
[25] for Gaussian distributions. The effect of evaluating
sequentially at the optimum of the acquisition function
can be seen in Fig. 1.

The acquisition function is optimized through the
NORA active sampling strategy described in [26]: we
draw MC samples from the mean µ(x) of the GPR using
a Nested Sampler (NS), in our study PolyChord [61, 62].
The acquisition function is then evaluated at the result-
ing NS samples, and its value is used to produce a pool
of candidate points. This pool is ranked using the Krig-
ing believer [63] prescription so that the n-th point is
assigned a conditioned acquisition function value assum-
ing a true posterior evaluation at the n− 1 points above
it. The optimal batch size is approximately equal to d
[25], making the GPry algorithm efficiently parallelizable
up to d processes using MPI.

The use of a NS at the acquisition step, that explores
the full surrogate posterior (as opposed to directly maxi-
mizing the acquisition function), makes it easier for GPry
to map a multimodal posterior, such as those expected

in the sky localization parameters for low-latency sig-
nals, as demonstrated in [26]. This ability can be fur-
ther boosted by making the acquisition function more
exploratory (lower scaling factor ζ in Eq. (15)), and the
exploration of the posterior more thorough (larger num-
ber of live points of the NS).

At the end of every iteration, convergence is checked
and considered reached as soon as one of two criteria
is fulfilled at least twice consecutively: the value of the
likelihood at the new proposed sampling locations is close
enough to their GPR-predicted value (see [25] for clarifi-
cation), or the Gaussian-approximated Kullback-Leibler
divergence1 between consecutive NORA NS runs is small
enough.

After convergence of the Bayesian optimization loop
has been reached, MCMC samples of the surrogate model
are generated. This typically only takes a few seconds
since the evaluation of the surrogate model is very fast
at O(10−5 s). To do so, we use Cobaya’s implementation
of the MCMC sampler of CosmoMC [64, 65].2 A flow chart
of the algorithm is shown in Fig. 2.

1 I.e., the Kullback-Leibler divergence, see Eq. (17), when distri-
butions are approximated as multivariate Gaussians defined by
their respective empirical means and covariance matrices.

2 Notice that any other sampler, including those that require gra-
dients, could be used without changing our conclusions.
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FIG. 2. Simplified flow chart of the GPry algorithm. Looking
at Fig. 1, the GPR at the top of its first column presents the
initial stage, where the GPR has been fit to an initial set of
two samples. The main loop (“acquire→evaluate→fit”) cor-
responds sequentially to finding the location of the maximum
of the acquisition function in the bottom row (dotted vertical
line), evaluating the log-posterior there, and fitting the GPR
to obtain the new model at the top of the following column.

C. Inference strategy and methodology for
validating the results

GPry adopts default values for the parameters control-
ling the some of the aspects of the algorithm mentioned
above, based on test runs on typical scenarios [25, 26].
The peculiarities of the problem at hand motivate chang-
ing some of these defaults in each case, as detailed in
Table IV in Appendix B, and summarized below:

• For all three sources, especially for the stBHB and
SMBHB, the log-likelihood presents significant nu-
merical noise with respect to small changes in the
waveform parameters. If not correctly accounted
for, GPry interprets this sizable noise contribution
as physically meaningful, which may lead to over-
fitting. We alleviate this problem by choosing large
values of the expected noise scale σn in Eq. (14).

Away from the mode, for very low likelihood val-
ues, the numerical noise dominates, so we raise the
SVM classifier cutoff to exclude low-valued regions
from the GPR.

• For the sources with the slowest likelihood, the
stBHB and especially the SMBHB, it makes sense
to increase the overhead of the algorithm in ex-
change for reducing the number of necessary true
posterior evaluations for convergence. Hence, we
increase the frequency and the number of restarts
for the GPR hyperparameters optimization. Simi-
larly, we update the set of NS samples from mean
GPR more often, and, for the SMBHB, reduce the
number of Kriging steps.

• Since the set of initial points for the stBHB and
SMBHB is very informative (see Sec. III A), it is
advantageous to define a trust region around the
current training set restricting the area where new
evaluations are proposed. This region is the min-
imal hyper-rectangle containing training samples
with posterior density above some cutoff with re-
spect to the best one.

For each source type, we consider a high-SNR source
signal as a noiseless LISA data stream, then inject it
in multiple simulated noise realizations The three eas-
ier noiseless inference problems are used for consistency
checks (e.g., robustness with respect to initialization) and
are not presented below.

In order to benchmark GPry’s performance, both in
terms of computational cost and inference accuracy, we
pair every GPry run in each noise realization with a simi-
lar run with the machine-learning-enhanced nested sam-
pler nessai, which has proven to be an efficient and reli-
able sampler in the context of GW data analysis [66–68].

We perform two tests on the two sets of runs. The
first focuses on the accuracy of the full pipeline, from
signal and noise generation to MC sampling. In litera-
ture, this test is often referred to as a pp-plot [69, 70].
For a given sampler choice and source category, we per-
form N inference runs on independent noise realizations,

and compute the empirical quantiles {qi}Ni correspond-
ing to the injected parameters for the inferred posterior.
In the limit N →∞ the cumulative distribution function
of quantiles across runs is theoretically expected to ap-
proach that of the uniform distribution over the unit in-
terval. Deviations from the asymptotic distribution due
to finite N can be estimated numerically, and confidence
intervals constructed accordingly. We present results of
this test across source categories in Figs. 3a, 4a and 5a,
respectively.

In the second test, we focus instead on a direct compar-
ison between posteriors obtained through inference with
nessai and GPry in paired runs on the same noise re-
alizations. To do so, we evaluate the Jensen-Shannon
(JS) divergence DJS between each nessai posterior dis-
tribution P and the GPry surrogate model PGP over the
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parameter space [71]

DJS(P ||PGP) =
1

2
(DKL(P ||M) +DKL(PGP||M)) ,(16)

where M = 1
2 (P + PGP) is the mixture distribution of P

and PGP. The Kullback-Leibler (KL) divergence between
two continuous probability distributions P , M with den-
sities p(x), m(x) is defined as

DKL(P ||M) =

∫
p(x) log

(
p(x)

m(x)

)
dx . (17)

In practice, we compute the KL divergence as a Monte
Carlo sum of the samples from GPry and nessai. In this
paper, we use natural logarithms for the divergence cal-
culations. The JS-divergence DJS(P ||Q) approaches zero
if and only if P and Q describe the same distribution and
is upper-bounded by log 2. For inference purposes, val-
ues of DJS ≲ 0.05 would make GPry as accurate as tradi-
tional samplers, whereas values up to DJS = 0.1 could be
considered precise enough, given the large computational
trade-off. We show the distribution of DJS for different
source categories in Figs. 3b, 4b and 5b, respectively.

Following the formulas in Appendix A, for the di-
mensionality of our problems DJS = 0.05 (DJS = 0.1)
would translate into a mean deviation in each parame-
ter of ≈ 0.08σ (≈ 0.11σ) if assuming similar covariances,
or alternatively a misestimation of the error of ∼ 15%
(∼ 25%) if assuming similar means.

IV. RESULTS

A. Double white dwarf system

For a single injection of a DWD system, the wave-
form and subsequent likelihood computations are fast
(∼ 10−3 s). Hence, we do not expect significant savings in
wall clock computation time between GPry and nessai.
We therefore use it to test the GPry algorithm and gain
some insight on its reliability.

Parameter Symbol Value

Ecliptic longitude λ 2.0 rad
Ecliptic sine-latitude sinβ 0.479
Amplitude A 2 · 10−23

Frequency f 0.00377Hz

Frequency derivative ḟ 2× 10−18 Hz2

Cosine-inclination cos ι 0.4
Left phase ϕL 1.3 rad
Right phase ϕR 1.5 rad

SNR 23.64

TABLE I. Injected values for the sampled parameters of the
DWD system and total source SNR.

The injected parameters for the benchmark source are
shown in Table I. We draw 200 noise realizations ac-
cording to our model in Sec. II B. For this source all

parameters are constrained and the posterior distribu-
tion exhibits a single, localized nearly-Gaussian mode.
For each noise realization, we perform separate inference
runs with GPry and nessai, with the nessai runs per-
formed with 2000 live points. We then generate a PP
plot comparing the performance of both algorithms (see
Fig. 3a), and find a similar accuracy for the reconstruc-
tion. Furthermore, we compute the JS divergence, DJS,
between GPry and nessai for each noise realization, and
show its histogram in Fig. 3b. This comparison shows
that both samplers are in excellent agreement for all but
one noise realization. In Fig. 8 we show a corner plot
overlaying the posterior contours obtained by GPry and
nessai for the realization corresponding to the median
DJS. There we can observe the clear agreement between
the two approaches, achieved with 1/300 fewer likelihood
evaluations by GPry compared to nessai. The locations
of the GPry evaluations can be seen in the upper triangle
of Fig. 8.

In Fig. 9 we show a corner plot and the posterior
contours obtained by GPry and nessai corresponding
to the highest DJS = 0.12. Although the mode has
been found by GPry in this example, it remains underex-
plored. Tightening the convergence criterion would elim-
inate this problem in exchange for higher computational
costs, but maintaining the two-orders-of-magnitude dif-
ference in the number of likelihood evaluations with re-
spect to nessai. Only one of the 200 runs performed
shows this behavior with DJS > 0.05 which leads us to
conclude that the precision and accuracy of GPry is suf-
ficient in this context.

B. Stellar origin binary black holes

For one injection of a stBHB system, the cost of a sin-
gle evaluation of the inference pipeline (waveform and
likelihood calculations) is ∼ 10−1 s, which is significantly
higher than for DWDs. Thus, the savings here are po-
tentially higher, which makes GPry a worthy approach.

The benchmark source’s injected parameters are shown
in Table II. Unfortunately, as the semi-coherent search
presented in Sec. III A does not provide us with a reli-
able estimate of the phases, sampling these proves to be
difficult with GPry. This is further complicated by the
periodic nature of these parameters. We therefore fix
the values to the injected ones. Contrary to the DWD
case, the resulting posterior is highly non-Gaussian: it is
heavy-tailed and has a large curving degeneracy. As dis-
cussed in [25], exploring the full posterior in a reasonable
amount of time poses a challenge to GPry.

We generate 100 noise realizations and perform infer-
ence runs for each of them with GPry and nessai, with
the nessai runs performed with 2000 live points. We
then generate both a PP plot (see Fig. 4a), and compute
the JS divergence for each pair of runs, whose histogram
is shown in Fig. 4b. From the PP plot, it is clear that
GPry performs worse than nessai, even if both samplers
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FIG. 3. PP plot (a) and Jensen-Shannon divergence (b) for
200 DWD runs with different noise realizations. nessai and
GPry show comparable accuracy in the former, consistent at
99% confidence (dark gray shaded area) with the theoreti-
cal prediction (dotted black line) across all runs, and at 95%
confidence (light gray shaded area) for the largest majority
of them. Relatively to nessai, GPry reconstructs the poste-
rior shape reliably with only one run exceeding the target of
DJS = 0.05.

show reasonably good performance. This is reflected in
the higher JS divergences between nessai and GPry (see
Fig. 4b), localized mostly in the [0.1, 0.25] interval, with
a few DJS ≳ 0.3 outliers.

The effect of the DJS ∼ 0.2 divergence is illustrated in
Fig. 10, which shows the result of the median DJS run
with GPry and nessai. As we can see, although the re-
sulting mode for GPry is localized correctly towards the
injected value, it fails to explore a fraction of the poste-
rior corresponding to the large-values tail of the (Mc, δµ)
degeneracy. The handful of cases with higher DJS (up to

Parameter Symbol Value

Redshifted chirp mass Mc 48.618M⊙
Reduced mass-ratio δµ 0.5
Ecliptic longitude λ 0.19 rad
Ecliptic sine-latitude sinβ 0.82 rad
Initial orbital frequency f0 1.87mHz
Left phase (fixed) ϕL 0.97 rad
Right phase (fixed) ϕR 1.76 rad

Left square-root amplitude
√
AL 12.57 · 10−5

Right square-root amplitude
√
AR 1.13 · 10−5

Dimensionless spin χ1 0.223
Dimensionless spin χ2 0.262

SNR 16.79

TABLE II. Injected values for the parameters of the stBHB
system, and total source SNR. All parameters are sampled
except for the phases, for which the method described in
Sec. III A failed to provide reliable estimates. The detector-
frame individual masses are m1 = 99.55M⊙ and m2 =
33.18M⊙.

0.6) present the same sort of effect, and small (< 1σ)
biases for other parameters.

Possible mitigation strategies include fine-tuning of the
GPry hyperparameters, to increase the chance that it fits
this particular problem better (e.g. that it does not con-
verge prematurely), as well as the use of alternative pa-
rameterizations whose posterior would not present these
strong non-Gaussian features. We leave this endeavor
for future work. It must be remarked that this difficulty
also affects nessai, whose precision we had to increase
in order to map this posterior correctly, so that O(102)
more evaluations are needed than for the other two test
sources (see Fig. 6a).

As explained in Sec. III A, we are seeding the stBHB
runs discussed in this section with high-likelihood points
from a noiseless Semi-Coherent PSO run. Since a noise
realization introduces a bias in the inferred source pa-
rameters with respect to the noiseless case, we have in-
vestigated whether this under performance may be re-
lated to the use of a biased initial set of samples in the
GPry runs. To do this, we have performed 100 additional
paired runs with a noiseless injection, but found the same
under-exploration effect with a similar magnitude.

We find that our approach reliably recovers the ex-
pected central values, and therefore could be used for
source subtraction or fast, preliminary analysis; it is how-
ever suboptimal for full statistical source characteriza-
tion. There is ongoing development of GPry addressing
more robust inference in highly non-Gaussian distribu-
tions such as this stBHB posterior.

C. Supermassive binary black-hole

We now focus on the injection of a single SMBHB in
noisy LISA data. Here, the cost per evaluation of the
inference pipeline is larger than a few seconds and there-
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FIG. 4. PP plot (a) and Jensen-Shannon divergence (b)
for 100 stBHB runs with different noise realizations. While
nessai and GPry show comparable accuracy in the former,
consistent at 99%CL (dark shaded region) with the theoreti-
cal prediction (black dotted line), the distribution of DJS that
is entirely above the target value of 0.05 indicates insufficient
characterization of the posterior mode. Indeed, Fig. 10 shows
that GPry underestimates the tails, especially in the Mc, δµ
direction which leads to the large discrepancy.

.

fore GPry shows great potential: it could turn days- or
weeks-long inference runs with nessai into hours-long
ones.

The injected parameters for the benchmark source are
shown in Table III. For this high signal-to-noise case, the
posterior is nearly Gaussian.

In this case, we generate 100 noise realizations (of
which one was discarded due to an HPC error) and per-
form inference runs with GPry and nessai. The nessai
runs were performed with 500 live points, instead of 2000

Parameter Symbol Value

Redshifted chirp mass Mc 6.5744× 106 M⊙
Reduced mass-ratio δµ 0.12864
Luminosity distance dL 18.7Gpc
Ecliptic longitude λ 2.15 rad
Ecliptic sine-latitude sinβ −0.34 rad
cosine-inclination cos ι 0.86 rad

Orbital phase ϕorb
0 5.86 rad

Polarization ψ −0.136 rad
Time to merger τm 4.138× 106 s (47.89 days)
Dimensionless spin χ1 0.9874
Dimensionless spin χ2 0.9876

SNR 1944.8

TABLE III. Injected values for the sampled parameters of
the SMBHB system and total source SNR. The detector-
frame individual masses are m1 = 8.61 × 106 M⊙ and m2 =
6.65× 106 M⊙. The reference frequency is fref = 10−4 Hz.

as for the other sources, for reasons of limited computa-
tional capacity. The resulting PP plot can be seen in
Fig. 5a, and the relative JS divergence for each pair of
runs in Fig. 5b. Both GPry and nessai show very good
performance in the PP plot, and agree very well, with a
median DJS ≈ 0.05 and no run with DJS ≥ 0.1. The runs
with the median and highest DJS are shown in Figs. 11
and 12, respectively. Therein we contrast the respective
GPry runs with two higher-resolution (2000 live points)
nessai runs performed to show finer contours for com-
parison.

For the SMBHB runs GPry needs n < 103 evaluations,
which amounts to ≈ 30% of the total computation time
when the learning overhead is accounted for. In contrast,
nessai, despite being run with a significantly low reso-
lution for reasons of time, performs n ∼ 105 evaluations.

D. Number of posterior evaluations and speedup

GPry’s main advantage compared to more traditional
samplers is a drastic reduction in the number of posterior
evaluations needed for inference, as shown in Fig. 6a. It
is clear that GPry consistently performs O(102)−O(103)
fewer evaluations than nessai to converge to the pos-
terior mode. This, however, comes at the price of the
relatively large amount of time required for the acqui-
sition of new optimal sampling locations and fitting the
GPR hyperparameters. The size of this overhead de-
pends mainly on the dimensionality of the sampling space
and, to a lesser extent, on the Gaussianity of the poste-
rior. The dimensionality scaling of the overhead can be
clearly observed in Fig. 7 in Appendix B. Ultimately, the
potential speedup with respect to an alternative sampler
depends on a combination of a slow-enough posterior and
a reasonable dimensionality.

In Fig. 6b we show a comparison between the distri-
bution of wall-clock times of the GPry runs in this pa-
per, and an optimistic (assuming no overhead) estimate

Appendix

174



11

0.0 0.2 0.4 0.6 0.8 1.0
Quantile

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Nessai

GPry

99%CI

95%CI

(a)

0.03 0.04 0.05 0.06 0.07
DJS [Nats]

0

2

4

6

8

N
u

m
b

er
of

ru
n

s

(b)

FIG. 5. PP plot (a) and Jensen-Shannon divergence (b) for
99 SMBHB noisy runs. The former shows that both GPry and
nessai show comparable accuracy, consistent at 99% confi-
dence (dark gray shaded area) with the theoretical prediction
(black dotted line). The distribution of DJS clusters around
our target value of 0.05. This might partially be caused by
nessai running at low resolution, but also by GPry occasion-
ally under-exploring the tails of the posterior.

for the paired nessai runs. The quoted clock times are
obtained by multiplying the number of their likelihood
evaluations by their evaluation on the same hardware as
for the GPry runs.3 As we can see there, in the case of the
DWD source GPry does not outperform nessai, needing
roughly twice the time on average, due to the very short
computation time of the DWD likelihood. However, for

3 The nessai runs needed to be performed on a different platform
due to limitations in our computing budget.

the stBHBs and SMBHBs, where likelihood computa-
tions are more expensive, the speed up is highly signifi-
cant, reducing the time for inference from ∼ 106 core sec-
onds (around 11 days) to ∼ 104 core seconds (around 3
hours). Of course, both of these numbers can be reduced
through parallel processing but the advantage would still
be evident.

When taking the reliability and accuracy of the infer-
ence into account, it is clear that the biggest potential
for speed up is currently in the inference of SMBHBs.

V. CONCLUSIONS

We demonstrated that active sampling methods with
Gaussian processes have the ability to produce accu-
rate inference on individual injections of three different
GW sources expected in the LISA band, DWDs, stBHBs
and SMBHBs, employing O(10−2) fewer evaluations of
the GW signal likelihood than a state-of-the-art nested
sampler, and with a significant speedup, going up to a
O(10−2) wall-clock time reduction for likelihood evalu-
ation times approaching O(1 s) and above. They do so
with some, but little preconditioning, that can be pro-
vided by frequentist searches or other faster but less accu-
rate approximate inference schemes. Crucially, no expen-
sive pretraining is required with these methods as would
be in amortized approaches.

Using GPry as an active learning framework, we found
the advantages with respect to traditional Monte Carlo
samplers to be problem-dependent:

• Inference for DWDs can be provided quickly and
robustly, but the fast-to-evaluate DWD waveforms
mean that the overhead of acquiring samples and
fitting the Gaussian process outweigh the time
saved by reducing the number of sampling steps.
This in turn means that we report no savings in
terms of wall-clock time. However, in the presence
of gaps in the data, as expected in LISA, the com-
putational cost of the likelihood will go up. In this
case our approach could be competitive.

• Inferring the parameters for stBHBs was possible
with considerable time savings of 2 orders of mag-
nitude. However, this comes at the cost of under-
estimating the tails of the distribution, though we
retain the ability to reliably recover the central val-
ues. There is ongoing development of GPry aimed
at addressing this shortcoming.

• The best combination of speed-up and accuracy
was achieved for the SMBHBs, whose likelihood
is very slow to evaluate at O(1 s). We report a
speed-up of two orders of magnitude compared to
nested sampling while retaining a comparable ac-
curacy. This reduces the computational cost of the
inference from ∼ 106 core-seconds (∼ 11 core-days)
to merely ∼ 104 core-seconds (∼ 3 core-hours).
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FIG. 6. Violin plots comparing GPry (orange) and nessai (teal) on each of the three test sources on noisy LISA data, according
to (a) the total number of posterior evaluations needed, and (b) the hypothetical wall-clock time required for inference in a
single-core setup (see text for a precise definition of these time estimates). The violins show the distribution the number of
posterior samples and times, the minimum, median, and maximum values are marked with horizontal bars.

The integration of GPry (or a different active learning
approach) into the LISA Global Fit pipeline would al-
low the characterization of expensive-likelihood signals
(such as ones with strong time dependence) with low
latency, by spawning it on their conditional likelihoods
at any point. Even in cases in which GPry would be
outperformed at inference time by amortized approaches
(such as simulation-based inference), or if the calculation
of waveforms or likelihoods are significantly accelerated,
GPry opens the door to explore new physics (e.g., mod-
ified GR at emission or propagation) or characterize ex-
otic signals, for neither of which a pre-trained emulator
may be available or cost-effective.

GPry can also be a very powerful tool for prototyping
waveforms, theoretical models, and the inference pipeline
with mock data. It requires no pretraining, and no noise
to be present in the data and accounted for in the likeli-
hood. This enables quick forecasting and testing without
the need for dedicated computing infrastructure to be in
place.

The resulting surrogate posterior can be stored as kB-
sized object, a size much smaller than the data neces-
sary to reproduce the inference problem, and can be up-
sampled at very low computational cost. As an analytic
function, it can be easily used as a prior in subsequent
searches or constraints.

In the future, we aim to go beyond the results of this
paper in parallel with the ongoing development of GPry,

improving its accuracy in highly non-Gaussian and highly
multimodal cases (e.g., extreme mass ratio inspirals), and
its performance in larger dimensionalities such as infer-
ence problems with multiple sources.
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shordi, S. Akçay, P. Amaro Seoane, and et al., arXiv
e-prints , arXiv:2311.01300 (2023), arXiv:2311.01300 [gr-
qc].

[45] M. Tinto and S. V. Dhurandhar, Living Reviews in Rel-
ativity 8, 4 (2005).

[46] R. Buscicchio, A. Klein, E. Roebber, C. J. Moore,
and et al., Phys. Rev. D 104, 044065 (2021),
arXiv:2106.05259 [astro-ph.HE].

[47] L. J. Rubbo, N. J. Cornish, and O. Poujade,
Phys. Rev. D 69, 082003 (2004), arXiv:gr-qc/0311069
[gr-qc].
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Appendix A: Approximate Jensen-Shannon divergence between multivariate Gaussians

The KL divergence DKL, defined in Eq. (17), has an analytical representation when computed between two d-
dimensional multivariate Gaussians, N (µ1,Σ1) and N (µ2,Σ2), with means µ1 and µ2 and covariance matrices Σ1

and Σ2. Conversely, an analytical representation for the JS divergence, defined in Eq. (16), does not exist in this
case. However, we can find an approximate expression if the mixture distribution M (with mean µM = 1

2 (µ1 + µ2))

is a multivariate normal distribution with covariance ΣM = 1
2 (σ

2
1 +σ

2
2)I. The approximation holds if the multivariate

Gaussians are sufficiently similar, i.e. |∆µ| ≡ |µ1 − µ2| ≪ |Σ1 + Σ2| and σ1 ≈ σ2. In this case, the JS divergence
reads

DJS[N (µ1,Σ1)||N (µ2,Σ2)] ≈
1

4
∆µT (Σ1 +Σ2)

−1∆µ+
1

2
log

(
|Σ1 +Σ2|√
|Σ1||Σ2|

)
− d

2
log 2 . (A1)

For Σ1 = Σ2 = σ2I this simplifies to

DJS ≈
(∆µ)2

8σ2
, (A2)

and for |∆µ| = 0, Σ1 = σ2
1I, Σ2 = σ2

2I to

DJS ≈
d

2
log

σ2
1 + σ2

2

2σ1σ2
. (A3)

Therefore, when only the mean of the distribution is misestimated, DJS is a function of the distance ∆µ in units of
σ (see Eq. (A2)). This is independent of the number of dimensions if only one parameter is misestimated whereas it
is proportional to d if the misestimation occurs for multiple parameters. On the other hand, if the mean is properly
estimated but the spread of the distribution is not, then the result is proportional to d whenever, on average, the
spread is wrong by the same amount (see Eq. (A3)). We find that in less than 11 dimensions (the highest number of
inferred parameters that we consider in this paper), the approximation holds up to DJS ≈ 0.1.

Appendix B: Hyperparameters and overhead of GPry

Table IV shows the values of the GPry settings adapted to this study, as motivated in Sec. III C. An in-depth
explanation of the meaning of each setting can be found in GPry’s documentation4. In Fig. 7 we show a breakdown
of the computation costs of the GPry runs into posterior evaluation time and overhead from the two computationally
expensive steps of the Bayesian optimization loop.

Setting Description DWD stBHB SMBHB

noise level Expected level of numerical noise 0.1 4 2
inf threshold Cutoff in log-posterior of the SVM classifier 20σ 10σ 30σ
fit full every Number of iterations between GPR hyperparameter optimizations 2 2 1
n restarts optimizer Number of restarts per GPR hyperparameter optimization 2d d 4d
mc every Number of iterations between NS runs to generate proposals 5 3 3
n points per acq Number of Kriging steps determining the proposal batch size 7 9 8
trust region nstd Cutoff in log-posterior for defining the trust region — 3σ 3σ
trust region factor Enlargement factor of the trust region — 2.5 2.5

TABLE IV. Non-default settings for GPry, as discussed in Sec. III C. In the parameter values, a number followed by d is
multiplied by the dimensionality of the problem, whereas one followed by σ represents the difference between the log-posterior
of the cutoff and that of the best training sample as the equivalent number of 1-dimensional standard deviations, i.e. 2σ
represents the log-posterior difference from the top of the distribution of a d-dimensional Gaussian that leaves 95% of the mass
above it.

4 https://gpry.readthedocs.io
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FIG. 7. Graph showing the dominant part of the overhead (acquisition and hyperparameter fits of the GPR) vs the total time
spent on evaluating the log-posterior. Sub-dominant or non-necessary contributions to GPry’s overhead have been omitted such
as determining convergence, checkpointing and the generation of the final MC sample, which typically add up to a few seconds.
For the relatively fast to evaluate posteriors of the DWDs and stBHBs the runtime is dominated by GPry’s overhead which –
due to the much lower number of posterior evaluations – still leads to a speedup over nessai in the case of the stBHBs and
SMBHBs. For the slow SMBHB posterior, despite only roughly 1/3 of the time being spent on posterior evaluations, the large
reduction in their number with respect to nessai still leads to a significant speedup (see Fig. 6b).

Appendix C: Corner plots

In this appendix, we show some corner plots for the sources studied in Sec. IV. In the upper part of each plot we
furthermore show the sampling locations of GPry, omitting the samples that are far away from the mode (typically a
few percent). The contours for GPry are obtained by sampling the surrogate model with an MCMC.
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Abstract: Many early universe scenarios predict an enhancement of scalar perturbations

at scales currently unconstrained by cosmological probes. These perturbations source grav-

itational waves (GWs) at second order in perturbation theory, leading to a scalar-induced

gravitational wave (SIGW) background. The LISA detector, sensitive to mHz GWs, will

be able to constrain curvature perturbations in a new window corresponding to scales

k ∈ [1010, 1014]Mpc−1, difficult to probe otherwise. In this work, we forecast the capa-

bilities of LISA to constrain the source of SIGWs using different approaches: i) agnostic,

where the spectrum of curvature perturbations is binned in frequency space; ii) template-

based, modeling the curvature power spectrum based on motivated classes of models; iii)

ab initio, starting from first-principles model of inflation featuring an ultra-slow roll phase.

We compare the strengths and weaknesses of each approach. We also discuss the impact

on the SIGW spectrum of non-standard thermal histories affecting the kernels of SIGW

emission and non-Gaussianity in the statistics of the curvature perturbations. Finally, we

propose simple tests to assess whether the signal is compatible with the SIGW hypothesis.

The pipeline used is built into the SIGWAY code.
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1 Introduction

The Laser Interferometer Space Antenna (LISA) [1] represents a groundbreaking gravita-

tional wave (GW) observatory aimed to probe and impact our understanding of funda-

mental physics, astronomy, and cosmology [2–4]. With the first-ever direct probe of the

stochastic gravitational-wave background (SGWB) in the millihertz frequency range, LISA

provides the opportunity to unveil processes that occurred in the first stages of the Universe,

including inflation [5, 6]. Probing a primordial SGWB at millihertz frequencies corresponds

to exploring comoving scales that lie between those accessible to ground-based GW interfer-

ometers and those probed by pulsar-timing arrays, cosmic microwave background (CMB),

or large-scale structure surveys. These scales correspond to comoving wavenumbers in the

range k ∼ [1010, 1014]Mpc−1. Several cosmological models (see e.g. refs. [7–10] for reviews)

predict a measurable SGWB at these scales, often without any other complementary dis-

tinctive signature, placing LISA in a unique position to test these scenarios.

Inflationary models exhibiting amplified scalar fluctuations are one of the candidates

for sourcing an SGWB in the LISA frequency band. Enhanced scalar fluctuations gener-

ate scalar-induced gravitational waves (SIGWs) at second order in perturbations [11–20],

resulting in a potentially large SGWB. Amplified scalar fluctuations naturally arise in

single-field inflationary scenarios with features in the potential like those leading to ultra-

slow-roll (USR) phases, multi-field setups, and mechanisms such as preheating or early

matter-dominated eras. Intriguingly, the same perturbations that seed the SIGWs can

also trigger the formation of primordial black holes (PBHs) [21–25]. SIGWs in the milli-

hertz frequency band arise in correspondence with the asteroidal-mass window for PBHs,

a viable candidate for addressing the dark matter puzzle [26–28]. By detecting or setting

upper bounds on SIGWs, LISA would not only shed light on the inflationary epoch but also

on dark matter and non-astrophysical black hole formation channels. This makes SIGWs

a high-gain, well-motivated target for LISA.
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SIGWs are also powerful tools to investigate non-Gaussianity (NG) in the early uni-

verse since their production is highly sensitive to the statistical properties of scalar curva-

ture fluctuations [29–38]. NG is typically characterized by parameters such as fNL, which

quantifies NG at the bispectrum level (three-point correlation function), and τNL, which

appears in the trispectrum (four-point correlation function). Earlier analysis have focused

on contributions to the SIGW involving fNL, [39–50]. More recent studies have extended

this analysis to higher-order NG terms [45, 51–53]. Recently, a Fisher forecast analysis

for LISA about NG has been performed in [53]. The tensor power spectrum of SIGWs is

directly related to the four-point correlation function of the curvature fluctuations. Such a

correlation function has both connected and disconnected contributions. While the latter

contributes only to the Gaussian SIGW power spectrum, the former is directly linked to

the trispectrum through the τNL parameter [49], which is the key observable to constrain

NG from SIGWs.

The detection and characterization of the primordial SGWB is one of the most chal-

lenging objectives of the LISA mission [54]. LISA is a signal-dominated detector, where a

multitude of transient or quasi-monochromatic events overlap in time and frequency with

the stochastic superposition of all unresolved astrophysical events and, potentially also

with a significant primordial SGWB. Additionally, the stationary component of the instru-

mental noise can mimic a SGWB to some extent. Completing the LISA science program

for the SGWB therefore requires:

i) Determining whether a primordial SGWB is present in the data.

ii) Reconstructing the SGWB frequency shape and, if possible, its statistical properties.

iii) Setting upper limits on cosmological sources of SGWB not supported by the data.

iv) Constraining the parameters of the most likely SGWB source candidates.

ESA and NASA plan to address these tasks through the so-called “global fit”, a data anal-

ysis procedure where modules fitting each class of sources (galactic binaries, supermassive

black hole binaries, SGWB, etc.) iterate until convergence [54]. Recently, successful pro-

totype global fit analyses became available in the literature [55–57], tested on the Sangria

LISA Data Challenge (LDC) dataset [58], which contains no primordial SGWB. It is still

an open question how the global fit should support a primordial SGWB search, and how

the SGWB properties should be represented in the detection catalogs that the space agen-

cies will publish. A recent study [59] has attempted to perform an SGWB search directly

on the global fit residual.

In this work, we aim to bridge these gaps by providing elements of the global fit SGWB

module useful for the tasks i) - iv) in the presence of a SGWB due to SIGWs. To develop

and test our rationale, we work in the limit that all resolvable events have been precisely

reconstructed1, leaving us with data containing the stationary component of the noise, the

1Although this optimistic working hypothesis may seem unrealistic, it is the correct one to use in a global

fit module. All current implementations of the global fit are based on a blocked Gibbs sampling scheme,

where each source type is sampled independently, assuming a perfect subtraction of the other source types.
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SIGW background, and the foregrounds from the unresolved galactic and extragalactic

binaries.

As we focus on SIGW sources, we perform an analysis starting from the properties of

the source curvature power spectra Pζ(k) of the source, instead of the GW energy density

ΩGW(f) generated by these power spectra.

Concerning i) and ii), we prototype a model-agnostic method that reconstructs the

power spectrum Pζ(k) by binning it in frequency space. This approach allows for maximal

flexibility in capturing unknown SIGW features. It is however not as agnostic as other

generic SGWB searches [60–66] since it requires, by construction, a SIGW source, i.e. a

SGWB that can be derived as the proper convolution of a generic Pζ(f). Due to this

additional information, the method is expected to be more sensitive to SIGW signals than

other fully-agnostic approaches. It can be particularly useful for placing upper bounds on

the SIGW amplitude if no signal is detected in the LISA data, or act as a key ingredient

for SIGW model selection if a signal is present.

On the other hand, if the computational resources available to the mission allow run-

ning the global fit for every SGWB template, several modules for the template-based

SIGW reconstruction have been conceived since the first iterations of the global fit.2 The

advantage of such a possibility is clear: the more signal characterization is included in

the search, the higher the sensitivity to that signal. This process also reduces the risk of

SGWB misreconstructions that the global fit might absorb into the parameter estimation

of other sources. To address the points i) and ii) above within this framework, we col-

lect several well-motivated inflationary models with known Pζ(k) predictions, we design

template classes that effectively parameterize these Pζ(k), and we prototype the SIGW

template-based searches for them.

Accurately performing i) and ii) enables LISA to identify the most favored SIGW

models and then proceed with tasks iii) and iv). Accordingly, we implement a prototype

data analysis pipeline, choosing the USR inflationary setup as a representative example. In

particular, we develop a fast numerical algorithm determining Pζ(k) once the inflationary

model parameters are known. Thanks to its speed, the algorithm allows for rapid likelihood

evaluations in the fundamental-parameter space, enabling direct inference on the USR

model parameters from GW data.

As a proof of concept, we further perform inference on Pζ(k) in cosmological scenarios

where standard assumptions on Gaussianity of curvature perturbations and on the standard

thermal history of the Universe are relaxed. We evaluate the SIGW energy density sourced

by non-Gaussian contributions parametrized by τNL, resorting to the local ansatz emerging

from a perturbative expansion of scalar fluctuations. This contribution is known to modify

By periodically alternating which source type is being sampled over, imperfect source subtraction and

source type confusion are properly included and fully modeled in the resulting posterior. When working

after the global fit, with one sample of the residual as we assume in this work, these possible degeneracies

are not fully modeled. Additionally, if the global fit has experienced a convergence failure (the MCMC

is still “burning in”), unmodeled source power may still be in the data and lead to false detections of an

SGWB. Ref. [59] studies how this convergence failure affects stochastic background recovery in the available

prototype global fit residuals.
2See ref. [67] for other template-based reconstructions suitable for inflationary models.
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its frequency profile compared to the Gaussian counterpart [41, 42, 46, 49, 52, 53]. Since

for models of inflation with local type NG, where the curvature perturbation is dominated

by one degree of freedom, τNL and fNL are related, we take advantage of such a relation

to forecast the ability of LISA of probing NG, focusing the analysis on fNL and discussing

its implications for τNL. It is worth mentioning that, as recently argued by [68], the effects

of NG on the SIGW background may not always be accurately captured by an expansion

around a Gaussian field. Properly accounting for the full impact of intrinsic non-linearities

may significantly suppress or enhance the spectrum compared to the predictions based on

the local ansatz. Achieving this would require the development of fully non-perturbative

approaches to compute the SIGW spectrum, which are beyond the scope of this work.

Finally, we perform some diagnostic tests to assess whether the reconstructed signal is

consistent with the SIGW hypothesis. Such tests could help to rule out a scalar-induced

origin as a viable explanation for some SGWB spectral shapes.

The core of our numerical analysis is implemented in the SIGWAY code.3 This stand-

alone Python code addresses tasks i) - iv) for SIGW signals by offering the following

functionalities:

• A fast vectorized numerical integrator for computing the SGWB resulting from any

spectrum of primordial curvature fluctuations of modes reentering the Hubble radius

during radiation domination or a phase of early matter domination.

• An integration algorithm for computing the SGWB assuming a binned spectrum of

Pζ(k) for agnostic reconstructions of Pζ .

• Solvers for the background- and perturbation equations of motion for the inflaton in

a single-field scenario that can be called by the SIGW integrator starting from the

inflaton Lagrangian.

• Capabilities for computing the SGWB including non-Gaussian contributions for a

lognormal shape of Pζ .

• Functionality for pairing to the SGWBinner pipeline [61, 62] for computing the LISA

likelihood, and performing inference on the parameters governing the primordial cur-

vature fluctuations.

The paper is organized as follows. In Sec. 2 we review some representative models

predicting enhanced power spectra of curvature perturbations. In Sec. 3 we identify func-

tional forms that describe the shapes of the aforementioned spectra in terms of effective

parameters. In Sec. 4 we describe the analytic and numerical tools that we implement in

the SIGWAY code. The functionality of the SGWBinner code that is relevant for performing

inference is briefly described in Sec. 5. Sec. 6 illustrates, for representative benchmark sig-

nals, how the elements built in this work help tackle the key tasks i) – iv), including testing

whether the SIGW hypothesis is compatible with the putative signal in Sec. 7. Finally,

Sec. 8 presents our main conclusions, while App. A and App. B discuss technicalities and

subtleties regarding the proposed SIGW signal reconstruction and interpretation.

3https://github.com/jonaselgammal/SIGWAY
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Notation. We indicate with k the comoving wavenumber while with f the associated

frequency f = k/2π. For scales relevant to LISA, we translate wavenumbers in units of

Hz using c = HzMpc/(1.023 × 1014). For presentation purposes, we differentiate between

frequencies and momenta arbitrarily denoting them with units of Hz and s−1, respectively.

As usually done in the literature, we report the GW spectral energy density ΩGW multiplied

by the rescaled Hubble rate h = H0/(100 km/s/Mpc) squared. Finally, we indicate vectors

with bold symbols (e.g. x⃗ ≡ x) while their magnitude with the lower-case letter.

2 Early universe models leading to enhanced curvature spectra

In this section, we summarise the main classes of models predicting enhanced curvature

power spectra at small scales, which can lead to potential GW signatures in LISA.

2.1 Single field inflation

In the simplest models of inflation, a single scalar field known as the inflaton moves gradu-

ally down its potential under the influence of Hubble friction, resulting in a slow-roll (SR)

phase. The generated fluctuations are nearly scale-invariant, Gaussian, and adiabatic: they

freeze on super-Hubble scales, producing a universe that is statistically homogeneous and

isotropic [69–73].

In certain models, however, the inflaton potential in the Einstein frame can contain

features such as a flat region or a mild bump that causes the field velocity to decrease rapidly

in a brief USR4 phase [74–79] followed by another SR or a constant-roll phase [80, 81].

The shape of the enhanced spectral features is determined by the amplification of the

curvature perturbations during the USR phase, as well as by the specifics of the transition

into the USR era. If the field accelerates significantly during that transt epoch, it can

cause sizeable spectral modulation, and even be the dominant source of amplification. The

resulting perturbations deviate significantly from scale invariance, exhibiting the strongest

amplification for wavelengths exiting the horizon around the USR era.

Generically, models of this kind can be subdivided into four categories: i) Quasi-

inflection points and plateaus [44, 79, 82–112]; ii) Upward [113, 114] or downward [114–

117] steps; iii) Models in which the inflaton rolls through a global minimum/double-well

potentials [118–123]; and iv) Potentials with stacked features/oscillating potentials [124–

130]. It was also suggested that models going beyond a non-minimally coupled inflaton,

e.g. within modified gravity theories, can introduce features in terms other than the inflaton

potential or the non-minimal coupling [131–147]. See e.g. [148] for a model-building review.

Even though the literature on these models is quite vast, many scenarios predict a curvature

power spectrum that is enhanced at small scales with similar properties. In particular, most

models, especially those in category i), produce a single peak in the power spectrum that

is approximately captured by a broken power law. However, models with sharp features

4We consider a slightly broader definition of USR, which is often characterized by ηH ≡ −Ḧ/(2HḢ) = 3

(or η ≡ ϵ̇/(Hϵ) = −6) and can be realized on a flat plateau. However, models considered in the literature

often exhibit a small bump instead, which results in ηH > 3 due to the curvature of the potential. We will

include such deviations in our definition of USR.
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can produce spectral oscillations at and after the peak in the power spectrum. Such

enhancement mechanisms are mainly in the categories ii) and iii). Non-standard potentials

in category iv) can also deviate strongly from this picture.

We finish this section with a note on the theoretical consistency of these enhancing

mechanisms. There has been significant debate about the potential impact of loop correc-

tions, induced by the enhanced modes during an USR phase, on long-wavelength scales,

with some even challenging the validity of perturbative computations in these scenarios.

This discussion is also relevant for the possible interpretation of a stochastic signal as origi-

nating from SIGW. The question of whether these corrections can become sufficiently large

to undermine the predictive power of inflationary models related to PBH and SIGW has

been also explored in Res. [149–159], while other studies have questioned the very existence

of these corrections and proposed an argument against their existence [160–164].

2.2 Multi-field inflation

Hybrid/multi-field inflation. Given the high number of degrees of freedom within

multi-field inflationary setups, we can separate and control more efficiently two stages

responsible respectively for the generation of nearly scale-invariant primordial curvature

perturbations on large CMB scales, and for enhanced curvature perturbations on small

scales which lead to the production of SIGWs. Hybrid/multi-field models of inflation tend

to generate slowly-growing lognormal-like peaks in the curvature power spectrum [165–170]

while strong deviations from a geodesic trajectory in field space may lead to sharp peaks

and features such as spectral oscillations in Pζ [171–177].

Curvaton models Within curvaton scenarios [178], one can realize setups with the cur-

vaton field being characterized by a steep blue spectrum either due to interactions with

the inflaton or other degrees of freedom during inflation [179, 180] or due to a non-trivial

kinetic term [181, 182]. In particular, within axion-like curvaton setups, the curvaton field

is identified with the phase of a complex field whose modulus decreases rapidly during

inflation [183–186]. We should also highlight that in any curvaton model the curvature

perturbations on small scales originate from non-adiabatic curvaton field fluctuations dur-

ing inflation, leading to a non-Gaussian probability distribution function for the primordial

curvature perturbations [187–190] with important consequences at the level of the SIGW

signal [42, 53, 191, 192] (but see also [193]).

Axion-gauge field coupling Enhanced scalar [194] and tensor [194, 195] modes can

be produced by gauge fields amplified by their pseudo-scalar ϕFF̃ coupling with a rolling

inflaton or spectator [196, 197] axion during inflation. The gauge field amplitude is ex-

ponentially sensitive to the axion velocity, thus providing naturally blue signals. These

enhanced curvature modes can lead to PBH and SIGW [40, 198–200]. The precise shape

of these signals is sensitive to the axion evolution, which is significantly impacted by the

backreaction of the amplified gauge fields, which is recently being explored via lattice

simulations [201–204].
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2.3 Other classes of models

Preheating. During the preheating phase following inflation, as the inflaton field un-

dergoes coherent oscillations around the minimum of its potential, a striking phenomenon

emerges: the resonant amplification of quantum inflaton field fluctuations, which drives

particle production [205, 206]. These enhanced quantum fluctuations are accompanied

by a resonant amplification of the scalar metric fluctuations (usually quoted as metric

preheating [207–210]), or, in other terms, with enhanced curvature perturbations, re-

sponsible for the generation of SIGWs [211] and potentially for PBH formation [212–214]

(see however [215] for an assessment on the role of non-linearities and anharmonicities).

Most studies have focused on multi-field inflationary setups since in such scenarios the

enhancement of entropic (isocurvature) fluctuations can give rise to the enhancement of

the adiabatic/curvature fluctuations in the broad resonance regime [216–221]. This leads

to a notable amplification of the primordial curvature power spectrum, deviating from the

standard scale-invariant behavior at small scales [222–224]. Interestingly, recent works also

suggest that a parametric amplification of the curvature perturbations can occur even in

the narrow regime in the case of single field inflation [212–215, 225]. We should also note

that these gravitational waves are typically peaked at MHz or GHz frequencies far above

those of LISA, although some scenarios do allow for a peak in LISA’s range [226].

Matter Bouncing Scenarios. In non-singular matter bouncing cosmological models

[227], the matter contracting phase inevitably amplifies super-horizon curvature perturba-

tions. This enhancement can lead to an enhanced primordial curvature power spectrum

on small scales compared to the ones probed by CMB. As these perturbations cross the

cosmological horizon, either during the contracting phase [228–230] or the expanding Hot

Big Bang phase [231, 232], they can lead to the abundant production of SIGWs.

Early PBH domination. At distances much larger than the mean PBH separation

length, a population of PBHs can be viewed as an effective pressureless fluid. One can

then treat this PBH fluid within the context of cosmological perturbation theory showing

that the PBH energy fluctuations are isocurvature in nature [233, 234] and can convert

to adiabatic curvature perturbations in an early matter-dominated era driven by light

PBHs (mPBH < 109g) occurring before BBN. Interestingly enough, these PBH-induced

curvature perturbations can source abundant SIGWs detectable by GW observatories [233–

235]. Notably, these PBH associated SIGWs [236, 237] can serve as a novel portal to probe

primordial non-Gaussianities (NGs) [238, 239] at small scales (k > Mpc−1) as well the

underlying gravity theory [240–242] and Hawking evaporation [243–250].

2.4 A simple benchmark scenario: single field USR

In this work, we consider one of the simplest realizations of the single-field scenarios dis-

cussed in the previous section. This class of models is described by the inflaton potential

in the Einstein frame, V (ϕ). The corresponding action can be written as

S =

∫
d4x
√−g

(
1

2
M2

PR−
1

2
(∂µϕ)2 − V (ϕ)

)
, (2.1)
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where R is the Ricci scalar and MP is the reduced Planck mass. Assuming a flat FLRW

background geometry ds2 = −dt2 + a2dx2i , where a is the scale factor, the background

evolution is governed by the Friedmann equation (dots indicate time derivatives)

3M2
PH

2 = ϕ̇2/2 + V (ϕ) , (2.2)

with H = ȧ/a, and the Klein-Gordon equation (a prime denotes a derivative with respect

to the field)

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 . (2.3)

In order to produce an enhancement of perturbations at LISA scales, and at the same

time comply with CMB bounds at large scales, the inflationary potential should feature

a shallower region or an inflection point, which breaks the SR evolution exponentially

decelerating the field velocity.

In the class of models considered here, the dynamics can be understood in relatively

simple terms. In SR, the inflaton evolves with a negligible acceleration, and the SR solution

gives ϕ̇ = −V ′/(3H). As the inflaton begins to approach the inflection point, the SR

conditions are violated primarily due to a rapid change in the second SR parameter. Having

almost reached the local maximum ϕ∗, the inflaton will spend O(10) e-folds crossing it and

its evolution is thus dictated by ϕ̈+ 3Hϕ̇+ ηV (ϕ∗)H2(ϕ− ϕ∗) ≃ 0, where ηV ≡ M2
PV

′′/V
denotes the second potential SR parameter. The two solutions of this equation describe

two phases: First, a USR-like phase in which the inflaton rapidly decelerates, which leads

to an amplification of the power spectrum. Second, a subsequent constant roll or a SR

phase that is dual to the initial USR-like phase [81, 251].

The linear superposition of these solutions describes a smooth transition between these

epochs. The second SR parameter ηV (ϕ∗) determines the spectral slope after the peak

ns − 1 = 3(1 −
√
1− (4/3)ηV (ϕ∗)). Thus, as exact USR (ηV (ϕ∗) = 0) would produce a

scale-invariant spectrum at scales above the spectral peak, the violation of scale invariance

in the UV is directly related to the deviation from an exact USR.

As an example, we consider the potential given by the rational function proposed in [82]

(see also [85, 252])

V (ϕ) =
λ

12
ϕ2(vMP)

2

(
6− 4bl

ϕ

vMP

+ 3
ϕ2

(vMP)2

)(
1 + b

ϕ2

(vMP)2

)−2

. (2.4)

The presence of an inflection point is enforced by setting

b = (1 + bf )

[
1− b2l

3
+
b2l
3

(
9

2b2l
− 1

)2/3
]
, (2.5)

where we included a tuning parameter bf allowing for deviation from perfect inflection

points (with bf > 0 the inflection point becomes a shallow minimum). The field ϕ appearing

in the action (2.1) is canonically normalized, and minimally coupled to gravity. This is

a proxy for more realistic models in which the inflaton field has a quartic potential and

couples non-minimally to gravity via a ξRϕ2 term, see e.g. [83, 84, 99, 253]. After moving
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Figure 1. Example of a single field model (2.4), with our benchmark parameters (2.6), leading to an

early SR phase consistent with CMB data as well as an USR phase which leads to an enhancement

of perturbations within the LISA frequency range.

to the Einstein frame, the factor in the denominator appears, which flattens the potential

at large field values. In this case, one would further need to canonically normalize the field,

and possibly add logarithmic corrections to the coefficients of the monomials in Eq. (2.4).

We do not discuss the origin of such a potential, as our goal is solely to provide a simple

representative model to work with.

We define our benchmark potential by choosing the following parameters (close to the

ones used in [252])

λ = 1.4731× 10−6, v = 0.19688,

bl = 0.71223, bf = 1.87× 10−5 ,
(2.6)

leading to good agreement with CMB (within 3σ of current Planck 2018 data [254]) and at

the same time to a peak of the curvature spectrum: Pζ(kpeak) ≃ 10−3 at LISA scales. In

Eq. (2.6) we report 5 significant digits because of the required tuning of the USR potential

[252]. In Sec. 3.3 we describe how to compute the spectrum of curvature perturbations in

detail. The benchmark potential is depicted in Fig. 1, where we have arbitrarily normalized

the axes using the initial values ϕ0 = 3MP and V0 = 2.3 ·10−10M4
P , which are set well before

the SR phase that governs the CMB scales.

3 Modeling the curvature power spectrum

Throughout this paper, we describe the metric as a small perturbation of the FLRW metric

in the longitudinal (conformal Newtonian) gauge

ds2 = gµνdx
µdxν = −a2(1 + 2Φ)dη2 + a2

[
(1− 2Φ)δij +

1

2
hij

]
dxidxj , (3.1)

where η is the conformal time, and we neglect vector perturbations and anisotropic stress

(and so we can identify the two scalar Bardeen potentials, Φ = Ψ).

At linear order in perturbation theory, the time and momentum dependence of the

scalar potential Φ can be factored out by introducing the transfer function T (η, k): the
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Bardeen’s potential is related to the gauge-invariant comoving curvature perturbation ζ(k)

by

Φ(η,k) =
3 + 3w

5 + 3w
T (η, k)ζ(k) (3.2)

where w is the equation of state characterizing the fluid dominating the energy density in

the universe. In a radiation-dominated universe, w = 1/3, and the prefactor becomes 2/3.

As long as a mode k is super-Hubble (kη < 1), its evolution is frozen and the transfer

function tends to 1. For a homogeneous and isotropic universe, the two-point function of

curvature perturbations reads

⟨ζ(k1)ζ(k2)⟩ ≡ (2π)3δ(k1 + k2)Pζ(k1) ≡ (2π)3δ(k1 + k2)
2π2

k31
Pζ(k1), (3.3)

where we introduced the dimensionful power spectrum Pζ(k), and the dimensionless one

Pζ(k). We adopt different methodologies to model the primordial curvature power spec-

trum Pζ(k) generated in various inflationary models, by:

• Developing a model-independent parametrization of the spectrum, enabling an ag-

nostic reconstruction approach;

• Constructing analytical templates for Pζ(k). These templates are motivated by spe-

cific scenarios and are consequently less flexible than the previous case. However,

given the lower number of parameters controlling the templates as well as their simple

analytical descriptions, they alleviate the computational challenges posed by models

which would require expensive computation of the curvature power spectrum;

• Establishing a robust pipeline for the computation of primordial curvature power

spectra Pζ(k) for the benchmark model described in Sec. 2.

3.1 Model independent parameterization: binned spectrum approach

In this section, we discuss a parameterization of the power spectrum Pζ in terms of a

binned spectrum approach, which is useful in developing a template-independent procedure

for computing the SIGW. We represent the curvature power spectrum as a sum of discrete

components defined within small momentum intervals. Specifically, we decompose Pζ as a

sum of N − 1 top hat functions as

Pζ(p) =
N−1∑

i=1

AiΘ(p− pi)Θ(pi+1 − p) . (3.4)

The coefficients Ai – which can be approximated as constants – represent the amplitude of

the spectrum within the i-th bin. The latter is defined within the momentum boundaries

pi and pi+1, using the Heaviside step functions Θ(p).5 Any curvature spectrum Pζ can

then be associated with a specific vector Ai of the coefficients appearing in Eq. (3.4).

5One could extend this approach to include a tilt of the spectrum at each bin and enforcing continuity

for adjacent bins, at the cost of doubling the parameters controlling the power in each bin. We leave this,

and other possible extensions for future work.
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Therefore, our computation does not require an a priori choice of a particular template for

the momentum dependence of Pζ(p).
The SIGW depends quadratically on Pζ using convolution integrals. Hence, we can

expect that the ansatz (3.4) allows us to express the SIGW in terms of the double sum of

(model-dependent) vector components Ai, contracted over a general, model-independent

matrix kernel. In Sec. 4.4 we elaborate a simple procedure aimed at performing this task.

3.2 Analytical templates for curvature spectra

We divide the list of templates into classes depending on their properties. We can define

“smooth shapes” and shapes with features.

3.2.1 Smooth templates

We divide this class of templates into two cases:

Lognormal (LN). A typical class of spectral peaks can be characterized by a LN-shape

PLN
ζ (k) =

As√
2π∆2

exp

[
− 1

2∆2
log2(k/k∗)

]
. (3.5)

Such spectra appear e.g. in a subset of hybrid inflation and curvaton models, as well as from

axion-gauge field coupling, see the discussion in Sec. 2. This template can describe scenarios

in which the peak is typically narrow and symmetric in log space. Interestingly, this

template allows for an analytic derivation of the GW power spectrum in the broad/narrow

peak approximations ∆≫ 1 or ∆≪ 1 (see Ref. [255] and improvements in [256]). We will

consider the following benchmark scenario choosing

log10As = −2.50, log10∆ = log10(0.5) ≈ −0.301, log10
(
k∗/s−1

)
= −2.00 . (3.6)

Broken power law (BPL). Another broad class of spectra is encountered, for instance,

in single field inflation and curvaton models and can be described by a BPL

PBPL
ζ (k) = As

(α+ β)γ(
β (k/k∗)

−α/γ + α (k/k∗)
β/γ
)γ , (3.7)

where α, β > 0 describe respectively the growth and decay of the spectrum around the peak,

while γ is an O(1) model dependent parameter. The normalization is such that PBPL
ζ (k) =

As at the peak. This template provides a very close approximation to the shape of Pζ
obtained from single-field USR scenarios. There, one typically finds α ≃ 5− |1− 2ηH | ≈ 4

[80, 81, 257], where ηH is the second Hubble SR parameter (see footnote 4) before the USR

phase, which is typically close to SR, that is, ηH ≪ 1. For this template, it is possible to

find an analytic GW spectrum with γ = 1, see [258]. We will use the following benchmark

with parameters
log10As = −2.71, log10(k∗/s

−1) = −1.58,
α = 3.11, β = 0.221, γ = 1.25.

(3.8)

which provides a curvature power spectrum whose peak is within LISA’s sensitivity and

that fits the spectrum produced in the ab initio USR scenario described below (see Sec. 3.3).
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3.2.2 Templates with oscillations

Oscillations in the primordial power spectrum have been extensively studied to seek for

deviations from the standard SR inflationary paradigm mainly at scales relevant for CMB

or large-scale structure (see e.g. [34, 38, 259, 260]). These oscillations, denoted as primordial

features, typically arise due to a sudden transition during inflation [261], occurring over

a short time-scale of the order of one e-fold. SIGW provides an opportunity to probe

such primordial features at small-scales (≪ Mpc) [173, 175, 262–264]. Specifically, if the

mechanism responsible for the enhancement in Pζ is active when modes are sufficiently deep

inside the horizon, the resulting spectrum exhibits oscillations of order one. Due to their

large amplitude, these oscillations could potentially leave their imprints and be detected

in the SGWB. This phenomenon can occur in both single-field and multi-field inflationary

models. As benchmarks for these large amplitude oscillations, we will consider a small-

scale feature induced by a genuine multi-field mechanism and, secondly, weaker oscillations

arising from a rapid transition between SR and USR phases in single-field inflation.

Turns in multi-field inflation. In multi-field inflationary setups, a common phenomenon

is the presence of turns in the field space, being equivalent to the inflationary trajectory

deviating from a geodesic in field space. This bending is quantified through the parameter

η⊥, measuring the acceleration of the inflationary trajectory perpendicular to its direc-

tion [265, 266] or equivalently the deviation of the trajectory from a geodesic in the target

field space. One then can show that sharp and strong (large η⊥) turns can lead to the

following curvature power spectrum, modulated by order-one rapid oscillations6 [171–173]

PST
ζ (κ) = Penv

ζ (κ)

[
1 + (κ− 1) cos

(
2e−

δ
2 η⊥κ

)
+
√
(2− κ)κ sin

(
2e−

δ
2 η⊥κ

)]
Θ(2− κ) ,

(3.9)

and the envelope

Penv
ζ (κ) = As exp (−2η⊥δ) exp

[
2
√
(2− κ)κ η⊥δ

]
/ [4(2− κ)κ] , (3.10)

where As denotes the amplitude of the power spectrum in the absence of transient insta-

bility and κ ≡ k/k∗ with k∗ being associated with the maximally enhanced scale, deep

inside the cosmological Hubble sphere at the time of the sharp turn. The parameter δ is

the duration in e-folds of the turn. δ ≳ log η⊥ stands for broad turns and δ ≲ log η⊥ stands

for sharp turns. Finally, Θ(x) denotes the Heaviside theta function.

We define a parameterization in which the oscillations are switched off via the pa-

rameter F ∈ [0, 1], continuously interpolating between (3.9) when F = 1 and (3.10) when

F = 0

Pζ(k) = FPST
ζ (k) + (1− F )Penv

ζ (k). (3.11)

We consider the benchmark scenario whose parameters are given by

log10As = −1.5, log10 (k∗/s
−1) = −1.5,

δ = 0.5, η⊥ = 14, F = 1.
(3.12)

6Equation (3.9) assumes the entropic field to be massless during the turn. Generalized expressions for

other mass choices can be found in [173], where the qualitative features remain analogous.
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Rapid transitions between SR and USR phases. In most USR/inflection-point

scenarios, the transition from the initial SR phase to the USR-like phase depends on the

properties of the potential. In the presence of sufficiently sharp transitions between these

phases the spectrum of curvature perturbations deviates from a BPL profile due to oscil-

latory features.

A fully analytic spectrum can be obtained when the initial SR to USR transition is

instantaneous. In that case, the peak can be described as (Eq. (3.8) in [81])

Pζ(k) =
κ2

4π

∣∣∣∣∣−
Γ (1 + νII)

ζ1
(κ/2)−νII+

1
2JνII (κ)HνI (κ) (3.13)

+
Γ (νII)

ζ2
(κ/2)−νII+

3
2 [JνII (κ)HνI−1 (κ) + JνII+1 (κ)HνI (κ)]

∣∣∣∣∣

2

,

where, κ = k/k∗, Hν(x) and Jν(x) denote the Hankel- and Bessel functions of the first

kind, respectively, k∗ is the scale of the mode that exits the Hubble sphere during the SR

to USR transition, and νI and νII are related to the spectral slopes in the attractor phases

before and after the transition as ns = 2(2 − ν). The first line does not contribute to the

peak and can be omitted in case there is no sensitivity to spectral features away from the

peak. The parameters ζ1, ζ2 control the amplitude at the IR (or CMB) scales and the

peak, respectively.

This spectrum resembles a broken power law with a modulation around the peak. This

modulation has a period of 2k∗ and is damped as 1/k. It is generated in an instantaneous

SR to USR transition and is typically suppressed or removed when the transition is non-

instantaneous [81, 267, 268]. In this way, such oscillations carry information about the

evolution of the inflaton during the transition. Moreover, spectral oscillations can be

greatly enhanced in some cases. For instance, when the inflaton rolls through a deep

minimum before entering the USR phase [118–123].

We can test for the sensitivity of LISA to resolve these oscillations. To this aim, we

only consider the second line of the spectrum (3.13), which describes the peak, and consider

a generalized form7

Posc
ζ (k) = FPosc,B

ζ (k) + (1− F )Posc,BPL
ζ (k), (3.14)

where F ∈ [0, 1] and with

Posc,B
ζ (k) = π2κ5−2νIIAs

∣∣∣JνII (2κ)H
(1)
νI−1(2κ) + JνII+1(2κ)H

(1)
νI

(2κ)
∣∣∣
2
, (3.15)

Posc,BPL
ζ (k) = As

[(
κ7/2−νI

(νI + νII)Γ(νI − 1)

Γ(νII + 2)

)−γ

+
(
κ3/2−νII

)−γ
]−2/γ

. (3.16)

The rewriting in terms of the two contributions in Eqs. (3.15) and (3.16) is equivalent to

(3.13) when imposing F = 1, but it is done to separate the smooth BPL contribution from

7For notational simplicity, the template uses a different normalization and scaling of the argument than

(3.13).
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the one including the oscillations. This way, changing F smoothly transitions between an

oscillating (F = 1) and a non-oscillating F = 0 power spectra.

The shape of the BPL template is recovered using (3.7) with νI = (7 − α)/2 and

νII = (3 + β)/2 when α ≤ 5. To obtain an exact match with (3.7) the normalization and

the momenta must also be rescaled so that PBPL
ζ (k) = nPosc,BPL

ζ (bk), where

n ≡ bβ(1 + β/α)γ , b ≡
[

4(α/β)γΓ ((β + 7)/2)2

(−α+ β + 10)2Γ ((5− α)/2)2

] 1
α+β

(3.17)

or, equivalently, as As → nAs and k∗ → k∗/b. The benchmark scenario corresponds to

log10As = −2.58 , log10(k∗/s
−1) = −2.02

νI = 1.95 , νII = 1.61 , γ = 1.67 , F = 1.
(3.18)

We fix the parameters to match the BPL template in the limit F = 0.

3.3 Computation of Pζ in single field USR scenarios

The benchmark model we introduced in Sec. 2.4 is based on a single-field model of inflation

featuring a phase of USR. We now describe in detail how to compute the spectrum of

curvature perturbations using linear perturbation theory.

As a warm-up, let us define the system of equations in terms of dimensionless variables

rescaled to the corresponding relevant quantities. This typically improves the numerical

stability of a code computing the spectrum of curvature fluctuations. We define

x ≡ ϕ/MP, U(x) ≡ V (ϕ)/V0, (3.19)

where we introduce the suffix 0 to indicate the quantities evaluated at the initial conditions

of the background evolution. We can also define the dimensionless time and Hubble rate

using

τ ≡ tV 1/2
0 /MP, h ≡ HMP/V

1/2
0 . (3.20)

We can now change the evolution variable from time to the number of e-folds N , defined

as dN ≡ Hdt = hdτ , setting N = 0 at τ0. In this way, the background equations of motion

(2.2) and (2.3) become

y′ + 3

[
1− y2

6

]
y +

U,x

h2
= 0, (3.21a)

x′ − y = 0, (3.21b)

h′ +
(x′)2

2
h = 0, (3.21c)

where prime denotes derivatives with respect to N , while U,x ≡ dU(x)/dx. The initial

conditions for the inflaton and the Hubble parameters can be found assuming that initially,

SR is satisfied, which for a given initial x0 leads to

y0 = −
3

U0,x

(√
1 +

2

3
U2
0,x − 1

)
, h0 ≡

1√
6

(√
1 +

2

3
U2
0,x − 1

)1/2

. (3.22)
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Finally, in the code, we keep track of the equation of state during inflation winf ≡ pϕ/ρϕ,

which can be written in our notation as w = [(x′)2 − 3]/3. As inflation stops when the

equation of state becomes larger than w > −1/3, we stop the evolution when (x′)2 = 2.

The resulting inflationary background can be described by the evolution of the Hubble

rate H. This is dictated by dynamical equations relating H to the SR parameters, which

are defined as

ϵH ≡ −
Ḣ

H2
=

1

2M2
P

(
dϕ

dN

)2

≡ y2

2
, (3.23)

ηH ≡ −
Ḧ

2HḢ
= ϵH −

1

2

d log ϵH
dN

=
y2

2
− y′

y
, (3.24)

where we introduced y = x′. Notice that our definition of ηH differs from another definition

often used in the literature, which is expressed as ϵ̇H/(ϵHH). During the USR phase, this

definition equals approximately −2ηH neglecting ϵH corrections.

As long as the SR approximation is valid, i.e. ϵH ≪ 1 and ηH ≪ 1, the power spectrum

of curvature perturbations (see e.g. [269]) is given by

Pζ(k) =
H2

k

8π2M2
PϵH,k

=
V0
M4

P

(
hk

2πyk

)2

, (3.25)

where the suffix k indicates that these quantities are evaluated at Hubble crossing k = aH.

Consequently, one can also show that the scalar spectral index ns − 1 ≡ d lnPζ/d ln k and

the tensor-to-scalar ratio r ≡ Ph/Pζ are given by the well-known expressions

ns ≈ 1− 4ϵH + 2ηH , (3.26)

r ≈ 16ϵH , (3.27)

at leading order in the SR parameters.

The approximations above can not be used in the context of USR scenarios, as the large

deceleration of the inflaton velocity causes ηH ∼ O(1) (ηH = 3 in the limit of exponential

deceleration). We go beyond the SR approximation by solving the Mukhanov-Sasaki (MS)

equation [270, 271]. Introducing momentarily the conformal time η such that dη ≡ dt/a,

we can define the MS variable v ≡ aδϕ in terms of the inflaton perturbations in the spatially

flat gauge, which satisfies the EoM

∂2v

∂η2
+

(
k2 − 1

z

∂2z

∂η2

)
v = 0, (3.28)

where z ≡ a2(∂ϕ/∂η)/(∂a/∂η). We can relate the curvature perturbation to v at linear

order in perturbation theory using ζ = v/z = Hδϕ/(∂ϕ/∂t) = δx/y. Assuming initial

adiabatic vacuum, each mode k is fixed in the asymptotic past at ηin ≪ −1/k as

v(η) = e−ik(η−ηin)/
√
2k, (3.29)

which translates into boundary conditions for Eq. (3.28) of the form

vin =
1√
2k
,

∂vin
∂η

= −i
√
k

2
. (3.30)
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One can improve the stability of the numerical computation by defining a rescaled variable

δ̃ϕ ≡ aine
ik(η−ηin)δϕ

√
2k and the corresponding dimensionless quantity δ̃x ≡ δ̃ϕ/MP. The

prefactor absorbs the sub-Hubble oscillations, simplifying the time evolution of the sub-

Hubble phase. Next, we introduce the dimensionless momentum κ ≡ kMP/V
1/2
0 . Finally,

moving to the number of e-folds as the time variable, the MS equation becomes

d2δ̃x

dN2
+

(
3− 1

2
y2 − 2iκ

eNh

)
dδ̃x

dN
+

(
U,xx + 2U,xy

h2
+ 3y2 − 1

2
y4 − 2iκ

eNh

)
δ̃x = 0, (3.31)

to be solved with initial conditions δ̃ϕin = 1, and δ̃ϕ
′
in = −1, while the curvature power

spectrum is extracted using

Pζ(k) =
1

4π2
V0
M4

P

( κ

eNin

)2 |δ̃x|2
y2

. (3.32)

In Fig. 2 we show the background evolution of x(N), y(N) and h(N) obtained in

the benchmark scenario (2.6). For convenience, we define Nend as the number of e-folds

at the end of inflation. In the same plot (top panels), we report the evolution of the

Hubble SR parameters and the curvature power spectrum. For simplicity, we identify the

momentum with the corresponding time of Hubble crossing k = a(N)H(N). On top, we

also indicate the momentum in units of 1/s. The CMB reference scale crosses the Hubble

sphere N−Nend = −58 e-folds before the end of inflation, which is indicated with a dashed

vertical line. In the top panel, the curvature power spectrum is shown both using the SR

approximation (3.25) (blue line), which however fails to reproduce the spectrum around

the peak where the USR phase takes place. We show with an orange line the full spectrum

computed solving Eq. (3.31). At k = 0.05/Mpc where the SR expressions (3.25)– (3.27)

are valid, we find Pζ = 2.12 × 10−9, ns = 0.952, and r = 0.00726. These numbers are

compatible with the latest observational bounds [254, 272]

Pζ = (2.10± 0.03)× 10−9, ns = 0.9649± 0.0042, r < 0.036 (3.33)

at the scale kref ≡ 0.05/Mpc, reported here at 68% CL for As and ns, and at 95% for r.

The low value of ns is a rather common feature of models featuring an USR phase not

sufficiently far from the region of the potential controlling the CMB scales [83, 84, 99, 253],

as it is the case if one considers enhancements in the LISA band. This benchmark USR

scenario leads to a power spectrum within the LISA band which can be fitted with a BPL

template with parameters (3.8).

Let us mention here that it was recently suggested that USR dynamics, in the extremal

case of large spectral enhancement with Pζ ∼ O(10−2) leading to PBH formation, may vi-

olate perturbativity and induce loop corrections that could also affect much longer modes

associated with the scales observed through the CMB [149]. While the existence and mag-

nitude of this effect for soft modes is still under debate [128, 150–156, 158–164, 273–282],

recent analyses show that for realistic transitions into and out of USR perturbativity is

retained (see e.g. for analytical [152, 155, 159] and lattice results [283]). In this work, we

restrict to adopting linear perturbation theory to compute the Pζ at the LISA scales and

leave further refinements including loop corrections to the spectrum of curvature pertur-

bations for future work.
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Figure 2. From top to bottom: curvature power spectrum Pζ ; Hubble SR parameters ϵH and ηH ;

dimensionless inflaton field x; dimensionless inflaton field velocity y; rescaled Hubble parameter h.

In the second panel, ηH is initially small and negative and it transitions to positive values close to

ηH ∼ 3 during the USR phase. All quantities are plotted as a function of the number of e-folds

to the end of inflation. The vertical dashed lines indicate the epoch when the CMB pivot scale

kref = 0.05/Mpc crossed the Hubble sphere.

Non-Gaussianities. As a final note, let us comment on the NGs expected in this bench-

mark scenario. In this class of USR models, the peak in Pζ is generated during a brief

phase of USR inflation, which transitions into constant-roll (i.e. constant ηH) inflation

afterwards [81, 284, 285]. In these scenarios, NGs are controlled by the details of the

transition between USR and the subsequent phase, which is related to the UV tilt of the

spectrum [93, 286–288]. We can expect the non-linear curvature perturbation to take the

form

ζ = − 2

β
log

(
1− β

2
ζG

)
= ζG +

3

5
fNLζ

2
G + . . . , (3.34)
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with fNL = 5β/12 ≃ 0.092 in our benchmark scenario (3.8). Note, however, that this only

takes into account the local generation of non-Gaussianity on super-Hubble scales by con-

sidering Gaussian inflaton fluctuations, while it has recently been shown using simulations

that nonlinear interactions can also generate a large amount of non-Gaussianity intrinsic

to the inflaton [283]. Finally, let us mention that such small NG for perturbations of

the typical amplitude considered here would lead to negligible contributions to the SIGW

spectrum (see more discussion in Sec. 4.5), even beyond standard perturbation theory [68].

4 Computation of the scalar-induced GW background

Primordial scalar perturbations are frozen during their super-Hubble evolution; only when

re-entering the Hubble radius after inflation ends do they start evolving in time. Moreover,

even if scalar, vector and tensor modes are independent at the first order in perturbation

theory, they couple when going to higher orders in fluctuations. For example, scalar modes

source tensor modes and thus produce GWs.8.

In the metric defined in Eq. (3.1), we ignore tensor perturbations generated at first

order h
(1)
ij and consider scalar perturbations that act as a source of second order tensor

modes at h
(2)
ij . The exact evolution of h

(2)
ij can be obtained from the spatial part of the

Einstein equations after applying the projection tensor T lm
ij , which selects the transverse-

traceless component. In the absence of anisotropic stress, at second order (note that we

drop the superscript indicating the order in perturbation theory from now on) one obtains

[15, 16, 18, 19]

h′′ij(η,x) + 2Hh′ij(η,x)−∇2hij(η,x) = −4Tij lmSlm(η,x), (4.1)

where ′ is the derivative with respect to conformal time η, H = a′/a denotes the conformal

Hubble parameter, and Sij is the source term

Sij(η,x) = 4Φ∂i∂jΦ+ 2∂iΦ∂jΦ−
4

3(1 + w)
∂i

(
Φ′

H +Φ

)
∂j

(
Φ′

H +Φ

)
. (4.2)

In the last equation w is the equation-of-state parameter of the Universe, and the scalar

perturbation Φ(η,x) can be related to the gauge-invariant comoving curvature perturbation

ζ. Solving Eq. (4.1) in Fourier space, as we review in Sec. 4.1, we obtain the (time-

averaged) dimensionless power spectrum Ph(ηf , k) of GWs at a time ηf after the end

of their production. The fractional energy density of GWs per logarithmic interval in

frequency is given by

ΩGW(ηf , k) ≡
ρGW(ηf , k)

ρc(ηf )
=

1

24

(
k

H(η)

)2

Ph(ηf , k) , (4.3)

with

ρGW(η) =

∫
d ln k ρGW(η, k) , (4.4)

8The production of scalar modes from primordial tensor modes is discussed in [289, 290] Moreover, very

recently, SIGWs sourced by scalar-tensor perturbations have also been analyzed [291, 292].
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the bar denoting an oscillation average and ρc is the critical energy density. GWs redshift as

relativistic species and the current abundance of the GWB can be obtained by accounting

for entropy injections in the standard thermal history of the Universe:

ΩGW(k)h2 = Ωr,0h
2

(
g∗(ηf )
g0∗

)(
g0∗s

g∗,s(ηf )

)4/3

ΩGW(ηf , k) . (4.5)

Here g∗ (g∗,s) are the relativistic degrees of freedom in energy (entropy), Ωr,0h
2 = 4.2 ·10−5

is the current radiation density if the neutrino were massless [293]. Assuming standard

model degrees of freedom, one finds that [294]

cg(ηf ) ≡
(
g∗(ηf )
g0∗

)(
g0∗s

g∗,s(ηf )

)4/3

≃ 0.39, (4.6)

for ηf of relevance for LISA.

4.1 Source of GWs at second order in the scalar perturbations

The solution to Eq. (4.1) can be easily found in Fourier space, where the equation for the

GW amplitude h for each polarization state s becomes

h′′s(k, η) + 2Hh′s(k, η) + k2hs(k, η) = 4Ss(k, η) (4.7)

and where Ss(k, η) encloses the Fourier transform of the (projected) source given by

Ss(k, η) =
∫

d3p

(2π)3
Qs(k,p)f(|k − p|, p, η)ζ(p)ζ(k − p) . (4.8)

In the latter equation, we introduced

f(|k − p|, p, η) = 3(1 + w)

(5 + 3w)2

[
2(5 + 3w)T (|k − p|η)T (pη) + 4

H2
T ′(|k − p|η)T ′(pη)

+
4

H
(
T (|k − p|η)T ′(pη) + T ′(|k − p|η)T (pη)

)]
(4.9)

and we introduced the curvature perturbation transfer function T (kη), and the spheri-

cal coordinates (p, θ, ϕ) for the internal momentum p and aligned the axes (x̂, ŷ, ẑ) with

(e+(k), e×(k),k) (with e+, e× being the polarisation tensors for the GW) so that

Qs(k,p) = eijs (k̂)pipj =
p2√
2
sin2 θ ×

{
cos 2ϕ, s = +

sin 2ϕ, s = ×
. (4.10)

A solution to the Fourier transform of the inhomogeneous equation of motion for hij(η, k),

Eq. (4.1), can be obtained using the Green’s function Gk(η, η̄), that solves the homogeneous

equation

G′′
k(η, η̄) +

(
k2 − a′′

a

)
Gk(η, η̄) = δ (η − η̄) , (4.11)
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with the boundary conditions limη→η̄ Gk(η, η̄) = 0 and limη→η̄ G
′
k(η, η̄) = 1. The Green’s

function depends on k = |k| by isotropy and can be expressed analytically in terms of

Bessel functions as

k Gk(η, η̄) =
√
xx̄ [yν(x)jν(x̄)− jν(x)yν(x̄)] , (4.12)

where x = kη, x̄ = kη̄, and ν = 3(1− w)/[2(1 + 3w)] and jν and yν are respectively the

spherical Bessel function of the first and second kind. For example, during RD, kGk(η, η̄) =

sin(x− x̄)Θ(η − η̄), where Θ is the Heaviside function.

The amplitude of the tensor modes can then be written as

hs(k, η) =4

∫ η

ηi

dη̄ Gk(η, η̄)
a(η̄)

a(η)
Ss(k, η̄)

=4

∫ η

ηi

dη̄ Gk(η, η̄)
a(η̄)

a(η)

∫
d3p

(2π)3
Qs(k,p)f(|k − p|, p, η̄)ζ(p)ζ(k − p) , (4.13)

with s indicating the polarisation and ηi the initial emission time. The GW two-point

function, needed to obtain the energy density of GWs as a function of the scalar power

spectrum, is defined in terms of the GW power spectrum

⟨hr(η,k1)h
s(η,k2)⟩ ≡ (2π)3δ(k1 + k2) δ

rs 2π
2

k31
Ph(k1) . (4.14)

After substituting Eq. (4.12) into Eq. (4.13), the final expression for the second-order

induced tensor power spectrum reads [295, 296]

⟨hs1(η,k1)h
s2(η,k2)⟩ = 16

∫
d3p1

(2π)3
d3p2

(2π)3
Qs1(k1,p1)Qs2(k2,p2)

× I(|k1 − p1|, p1, η1)I(|k2 − p2|, p2, η2)δ(3)(k1 + k2)⟨ζp1ζk−p1ζp2ζk−p2⟩ . (4.15)

In the Gaussian case, where only the disconnected part of the trispectrum survives (hence

the “d” in the following equation, we discuss in Sec. 4.5 the impact of primordial NG), one

obtains

Ph,d(η, k) = 4

∫ ∞

0
dv

∫ 1+v

|1−v|
du

[
4v2 − (1 + v2 − u2)2

4uv

]2
I2(u, v, k, η)Pζ(kv)Pζ(ku), (4.16)

where we introduced the dimensionless variables

v ≡ p

k
, u ≡ |k − p|

k
. (4.17)

The overline stands for an oscillation average, and the kernel function I(u, v, η) is defined

in terms of Green’s function as

I(|k − p|, p, η) =
∫ η

ηi

dη̄ Gk(η, η̄)
a(η̄)

a(η)
f(|k − p|, p, η̄) . (4.18)

Since the integration domain of (4.16) is rectangular, for computational purposes, it is

convenient to rotate the coordinates into

t ≡ u+ v − 1, s ≡ u− v (4.19)
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and the SIGW spectrum Ph(η, k) can be then rewritten as

Ph(η, k) = 4

∫ ∞

0
dt

∫ 1

0
ds

[
t(2 + t)(1− s2)

(1− s+ t)(1 + s+ t)

]2
I2(t, s, k, η)

× Pζ
(
k
t+ s+ 1

2

)
Pζ
(
k
t− s+ 1

2

)
, (4.20)

where the integration in s is restricted to positive values due to the integrand being an

even function of s. The integration kernel I(t, s, η) contains information about the time

evolution of the source during emission, as well as the propagation of the emitted GWs after

emission, and thus depends on the thermal history when the relevant modes re-entered the

Hubble radius. Let us consider different assumptions on the thermal history in the following

sections.

The generation of tensor modes at second-order in perturbation theory raises concerns

about the potential gauge dependence of results commonly calculated in the Newtonian

gauge. Unlike first-order tensor modes, which are gauge invariant, second-order tensor

modes are gauge dependent [297]. During the phase when the source is still active, the

result is expected to remain gauge-dependent, as one cannot directly identify the tensor

mode with the freely propagating GW. However, when the source becomes inactive after

the GWs are produced, it effectively decouples from the GWs. This happens for example

during the radiation-dominated era of the Universe and in the other cases considered in this

draft. Therefore, in the late-time limit well inside the cosmological horizon, tensor mode

behaves as linear metric perturbations and the initial gauge dependence no longer affects

the final result [298–301], ensuring that the spectra computed in this work are unaffected

by this issue.

4.2 Radiation-dominated era

If the emission takes place in a RD universe, the kernel function in the deep sub-horizon

regime kη →∞ takes the form [49, 295, 296]

I2RD(t, s, kη →∞) =
1

2(kη)2
I2A(u, v)

[
I2B(u, v) + I2C(u, v)

]
(4.21)

where

IA(u, v) =
3(u2 + v2 − 3)

4u3v3
,

IB(u, v) = −4uv + (u2 + v2 − 3) log

∣∣∣∣
3− (u+ v)2

3− (u− v)2
∣∣∣∣ ,

IC(u, v) = π(u2 + v2 − 3)Θ(u+ v −
√
3) ,

(4.22)

u and v have been introduced above and again Θ(x) is the Heaviside function. Notice that

the unphysical divergence obtained in the limit |k − p| + p =
√
3k, which is also retained

in the spectrum produced by monochromatic scalar perturbations [18]. The factor of
√
3

originates from the (inverse) sound speed in RD appearing in the transfer function, and

in the limit |k − p| + p =
√
3k the contributions from some of the source terms add up
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constructively and build up logarithmically over time [295]. Assuming RD up to η → ∞
leads to this logarithmic divergence, which is regularized in the integral for Ph if Pζ(k)
is smooth enough (e.g. has a nonzero width), or if the emission time is finite. We do not

introduce this regulator here, as it is numerically irrelevant for spectra with finite width

[67].

4.3 Transition from an early matter-dominated to the radiation-dominated

era

We further consider the alternative thermal history wherein an early matter-dominated

(eMD) era may precede the RD era. We follow the prescription of [302], assuming a sudden

transition at a conformal time η = ηR, where the subscript R indicates the reheating time

[296]. In this scenario, the dominant contribution comes from GWs induced during the RD

era by the scalar perturbations that have entered the horizon during an eMD era.

Interestingly, in this case, one observes a resonantly enhanced production of GWs. In

particular, during the transition, the time derivative of the Bardeen potential Φ, which is

the source of the SIGW signal, goes very quickly from Φ′ = 0 (since in an eMD era Φ =

constant) to Φ′ ̸= 0 (see [234, 299] for more details), leading to an enhanced secondary

tensor mode production sourced mainly by the H2Φ′2 term in Eq. (4.2). In a more physical

scenario, the transition happens more gradually [303–305].

For the kernel function I(t, s, k, η), one finds two dominant contributions at the onset

of the late RD era, i.e. at η = ηR, when most of the GWs are expected to be produced [299,

306]. The first contribution to I(t, s, k, η) is given by kmax/k ∼ 1, at t0 =
√
3− 1 [302]

I2lRD,res(t0, s, k, ηR) ≃ Y
9
(
−5 + s2 + 2t+ t2

)4
x8R

21754(1− s+ t)2(1 + s+ t)2
Ci2 (y) , (4.23)

where xR = kηR. The variable y is defined as y ≡ |t+1−c−1
s |xR

2c−1
s

= |t+1−
√
3|xR

2
√
3

, and Y is a

fudge factor to absorb the uncertainty in the integration boundary, set here to be 2.3 as in

[302]. At t0 =
√
3− 1, the logarithmic singularity of the function Ci is reached, giving rise

to the peak in the spectrum.

The second contribution to I(t, s, k, η) comes from the wave-numbers satisfying kmax/k ≫
1, hence the integrations are dominated by the large t region u ∼ v ∼ t ≫ 1. Therefore,

the dependence on s is lost. Setting s = 0, the kernel function reads

I2lRD,LV(t≫ 1, s, k, ηR) ≃
9t4x8R
21754

[
4Ci2(xR/2) +

(
π − 2Si(xR/2)

)2]
. (4.24)

The integration region is

0 ≤ s ≤ 1 and 0 ≤ t ≤ −s+ 2
kmax

k
− 1 for k ≤ kmax, (4.25)

and the result obtained from this integration region is then doubled to account for s→ −s.
The two contributions are computed separately and added to give

ΩeMDRD
GW ≃ Ω

(LV)
GW +Ω

(res)
GW . (4.26)
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4.4 Computation of SIGW with the binned spectrum approach

In this section, we discuss in more detail the procedure sketched in Sec. 3.1 for computing

the SIGW in terms of a template-free approach to the curvature power spectrum. We

express the power spectrum as a sum over momentum bins, as in Eq. (3.4). The specific

profile for the power spectrum Pζ is then associated with a vector of coefficients Ai. By

plugging Eq. (3.4) into Eqs. (4.3) and (4.20), we recast the SIGW density into the sum

ΩGW (k) =

N−1∑

i,j

Ω
(i,j)
GW (k)AiAj (4.27)

performed over the momentum bins. The kernel for this sum is the matrix

Ω
(i,j)
GW(k) =

1

12

(
k

aH

)2 ∫ ∞

0
dt

∫ 1

0
ds

[
t(2 + t)(s2 − 1)

(1− s+ t) (1 + s+ t)

]2
I2 (t, s, k, η)

×Θ(k v (s, t)− pi) Θ (pi+1 − k v (s, t)) Θ (k u (s, t)− pj)Θ (pj+1 − k u (s, t)) , (4.28)

where pi, pj are the boundaries of the momentum bins entering in Eq. (3.4).

Importantly, we stress that the matrix Ω
(i,j)
GW of Eq. (4.27) is independent of the specific

scalar spectrum considered, and the information on Pζ is stored only in the coefficients

Ai appearing quadratically in Eq. (4.27). This implies that the computation of Eq. (4.28)

depends only on the kernel function, and its entries can be computed once for all for any

given cosmology: for example, we can use one of the kernels discussed in Sec. 4.2 or Sec. 4.3.

The nested integrals appearing in Eq. (4.28) should then be performed a single time for

each kernel. Once Ω
(i,j)
GW is determined, it can be used to swiftly compute the resulting

ΩGW for any Pζ , by means of the contractions in Eq. (4.27). In fact, with this method, we

reduce the problem of computing ΩGW to perform the simple sum of Eq. (4.27).

This approach is useful in scenarios where the underlying shape of the curvature spec-

trum is not accurately known, for example, due to the presence of peaks or breaks, whose

position depends on the underlying physics we wish to probe. In fact, the method allows

us to scan over different sets of Ai components, swiftly computing the SIGW frequency

profile, which can then be compared with data. Other approaches for reconstructing the

properties of the underlying Pζ from SIGW data can be found for example in [307–309].

We tabulate the matrix (4.27) assuming a varying number of bins N in the range of

relevance for LISA, which is k ∈ [1.26 × 10−4, 6.28]/s both for the internal (i, j) indices,

as well as external momentum k. This range is chosen to match the one used by the

SGWBinner code adopted to perform the LISA forecasts. See the discussion in Sec. 5.

4.5 Non-Gaussian imprints on the SIGW spectrum

From the solution of the SIGW, Eq. (4.13), one can relate the tensor power spectrum

to the four-point correlation function of the curvature perturbation, see Eq. (4.15). As

anticipated above, the latter can be decomposed into disconnected and connected contri-

butions, where the connected part vanishes when primordial fluctuations are drawn from

a Gaussian distribution. The disconnected contribution gives rise to Eq. (4.16) that can
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be solely expressed in terms of the scalar power spectrum Pζ(k). However, the connected

contribution depends on the primordial trispectrum ⟨ζk1ζk2ζk3ζk4⟩′c = Tζ(k1,k2,k3,k4),

whose corresponding tensor power spectrum reads [49]9

Ph,c =
1

4π

∫ ∞

0
dv1

∫ 1+v1

|1−v1|
du1

∫ ∞

0
dv2

∫ 1+v2

|1−v2|
du2

∫ 2π

0
dψ

× cos(2ψ)

(u1v1u2v2)5/4
[4v21 − (1 + v21 − u21)2][4v22 − (1 + v22 − u22)2]

× I(u1, v1, k, η)I(u2, v2, k, η)Tζ(u1, v1, u2, v2, ψ) , (4.29)

and we use the variables ui and vi defined above. The dimensionless trispectrum function

Tζ is defined as

Tζ(k1,k2,k3,k4) =
(k1k2k3k4)

9/4

(2π)6
Tζ(k1,k2,k3,k4) , (4.30)

and is evaluated at k1 = p1,k2 = k − p1, k3 = −p2, k4 = −k + p2, with ψ = ϕ1 − ϕ2 the

difference between the azimuthal angles of p1 and p2 with respect to k. The integration

kernel for emission during radiation domination is given by

I(u1, v1, k, η)I(u2, v2, k, η) =
1

2(kη)2
IA(u1, v1)IA(u2, v2)

× [IB(u1, v1)IB(u2, v2) + IC(u1, v1)IC(u2, v2)] , (4.31)

in terms of IA,B,C defined in Eq. (4.22) and with x = kη. As for the disconnected con-

tribution, it is numerically convenient to change the integration variables from (ui, vi) to

(ti, si), with ∫ ∞

0
dvi

∫ 1+vi

|1−vi|
dui(. . .) =

1

2

∫ ∞

0
dti

∫ 1

−1
dsi(. . .) , (4.32)

where we did not assume symmetry between positive and negative s, to retain full generality

in this case.

On general grounds, the properties of the trispectrum and the symmetries of the kernel

Eq. (4.31) enable one to split the connected contribution (4.29) into three inequivalent

channels [49]. Hence, any trispectrum function of the unordered set {k1,k2,k3,k4}, can
be written as

Tζ [{k1,k2,k3,k4}] = T̃ζ [(k1,k2,k3,k4)] + 23 perm. , (4.33)

where the individual contributions T̃ζ are not in general invariant under permutations of

their arguments. Moreover, it can be conveniently written as

Tζ = (Ts + Tt + Tu) + 7 perm. , with





Ts = T̃ζ [(k1,k2;k3,k4)]

Tt = T̃ζ [(k1,k3;k2,k4)]

Tu = T̃ζ [(k1,k4;k2,k3)]

, (4.34)

9In [49], which uses different conventions, their Eq. (2.6) should be divided by 4, as well as subsequent

results. This has been corrected in [50] in a study of SIGWs including parity violation.
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where the channels s, t and u correspond to the three unordered pairs {{k1,k2}, {k3,k4}},
{{k1,k3}, {k2,k4}} and {{k1,k4}, {k2,k3}} together with their “exchanged momenta” s =

|k1 + k2|, t = |k1 + k3| and u = |k1 + k4| respectively, and where the seven permutations

in (4.34) preserves the exchanged momentum of each channel. Furthermore one can show

that the trispectrum-induced GW spectrum (4.29) can be written in terms of only three

fundamental contributions corresponding to the seeds Ts, Tt and Tu:

Ph,c = 8(Ps
h,c + P t

h,c + Pu
h,c) , (4.35)

with Ps
h,c simply corresponding to Ph,c with Tζ replaced by Ts, etc.

Computing from first principles the trispectrum generated in models relevant for GW

astronomy is a difficult task, as these scenarios often involve a strong breaking of scale

invariance as well as enhanced fluctuations that can jeopardize perturbative computations,

see e.g. [114, 128, 130, 173, 283, 310–313]. In the following, we assume that the trispectrum

is of the local τNL type:

T loc
ζ = τNL [(Pζ(s)Pζ(k1)Pζ(k3) + 3 perm.) + (s↔ t) + (s↔ u)] . (4.36)

We give more details on the computation of the spectrum in the presence of local NGs in

App. A.4.

Local NGs, typical of multi-field models, generically arise from the non-linear evolution

of cosmological fluctuations on super-Hubble scales (see e.g. [36] for a review). Besides the

τNL type, which emerges microscopically from the exchange of scalar particles through

cubic interactions, the local trispectrum also acquires in general a gNL component, coming

from contact quartic interactions. However, its momentum dependence is such that it does

not contribute to the GW spectrum, and hence we can disregard it for our purpose. We

stress that our choice, Eq. (4.36), is a first methodological step motivated by simplicity, in

particular because the momentum dependence of the trispectrum is fully characterized by

the one of the power spectrum Pζ(k), which is not the case in general (see [49] for a study

of the impact of various trispectrum shapes on the GW spectrum). Let us also highlight

a conceptual aspect. Several works in the literature consider a local ansatz in which the

real-space curvature perturbation ζ(x) is expanded in powers of a Gaussian variable ζG(x)

as

ζ = ζG +
3

5
fNLζ

2
G + . . . , (4.37)

and compare the corresponding GW spectrum with the one obtained by keeping only the

first term, fully characterized by the power spectrum PζG , see e.g. [41, 42, 45, 46, 48, 52,

53, 277, 309, 314–317]. At leading order, such an expansion does lead to the trispectrum

(4.36) with Pζ replaced by PζG , and τNL = (6fNL/5)
2. However, the nonlinear terms in Eq.

(4.37) also imply that the curvature power spectrum does not coincide with PζG . Instead,

keeping only the quadratic term shown in Eq. (4.37) for definiteness, one finds the power

spectrum

Pζ(k) = PζG(k) +
1

2

(
6

5
fNL

)2 ∫ d3p

(2π)3
PζG(p)PζG(|k − p|) . (4.38)
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Hence, as described in [49], in this approach, one considers on similar grounds the impact

of primordial NG on the SIGW, through the trispectrum, and the difference between a

putative PζG to which we have no access, and the power spectrum of ζ which is anyway

the only observable quantity. Again, we emphasize that the effects of non-linearities on

the SIGW spectrum may not always be fully captured by the local ansatz, Eq. (4.37).

As a result, the predicted amplitude of the resulting SGWB could differ significantly [68],

potentially being suppressed or enhanced by several orders of magnitude.

In our analysis, whose results are shown in Sec. 6.5, we find it conceptually clearer to

take as a benchmark the disconnected prediction from the purely Gaussian theory (4.16)

with a given power spectrum Pζ(k), which will take to be of the log-normal form (3.5), and

to compare it with the addition of the non-Gaussian, connected, contribution, Eq. (4.29)

with trispectrum (4.36). Note that for the latter, the s-channel contribution vanishes as

the corresponding Tζ in Eq. (4.29) does not depend on the azimuthal angle ψ. We are thus

left with the two t and u contributions in Eq. (4.35). Overall, we stress that the parameter

to be constrained from observations is τNL, which measures the non-Gaussian contribu-

tion to the SIGW spectrum coming from the trispectrum of curvature perturbations. On

scales relevant to LISA, there is a priori no constraint on τNL except that it is positive in

known concrete realizations of inflation. Its size is also a priori arbitrary, although from a

theoretical perspective, perturbative control during inflation typically implies τNLPζ < 1.

5 Mock signal reconstructions with the SGWBinner and SIGWAY codes

This section outlines the analysis method employed in this work. Before presenting the

LISA data model adopted in our analysis (Sec. 5.1) and functionalities of the code (Sec. 5.2),

let us briefly illustrate the measurement of GWs with LISA.

The observatory will consist of three satellites (α = 1, 2, 3) that orbit at the vertices

of an approximately equilateral triangle with sides about 2.5 million kilometers long. Each

satellite contains two Test Masses (TMs), whose positions are constantly monitored, and

two lasers emitting toward the other satellites. By monitoring the fractional Doppler

frequency shifts of photons traveling along the arms between satellites, LISA measures

the relative displacements of the TMs. The path connecting two satellites is typically

dubbed “link” and the single link measurement can be denoted as ηαβ(t), where the laser

emitted from the satellite β at time t − Lαβ/c is recorded at time t in the satellite α.

These measurements are, however, dominated by laser frequency noise, which is expected

to be several orders of magnitude greater than the required sensitivity [1]. To suppress

this noise contribution, LISA will employ a post-processing technique called Time-Delay

Interferometry (TDI) [318–326]. In practice, TDI can be understood as the operation of

3 × 6 matrix on the six single link measurements ηαβ(t) [64, 327] that returns the three

TDI channels where the laser frequency noise is strongly suppressed.

As in the previous studies using the SGWBinner code [61, 62, 67, 328, 329], in this work

we assume for simplicity i) equal and static arm lengths and ii) equality of noise at each
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link. While, in reality, these hypotheses will not be perfectly satisfied10, it has been shown

that the signal reconstruction is almost unaffected by unequal (but static) arm length and

unequal noise amplitudes [327, 332]. Under the equal and static arm length assumption,

the so-called first-generation TDI variables suffice to achieve laser noise cancellation.11 In

the {X,Y,Z} basis, they are expressed as

X ≡ (1−D13D31)(η12 +D12η21) + (D12D21 − 1)(η13 +D13η31) , (5.1)

with Y and Z being cyclic permutations of X. Here Dαβ is the delay operator acting on any

time-dependent function x(t) as Dαβ x(t) = x(t−Lαβ) and we take Lαβ = L = 2.5×109m.

For SGWB signal searches, it is convenient to combine the XYZ variables to obtain the

so-called AET basis [334, 335], defined as

A ≡ Z−X√
2
, E ≡ X− 2Y + Z√

6
, T ≡ X+Y+ Z√

3
, (5.2)

which, in the limit of equal arms and equal noises, can be shown to have vanishing cross-

correlations and simplify the likelihood computation. Moreover, due to its symmetric

structure, the T channel strongly suppresses GW signals at small frequencies compared to

instrumental noise. For this reason, the T channel can be treated as a quasi-null channel

that is mostly sensitive to instrumental noise.12

5.1 Data streams from LISA TDI channels

We represent the three time-domain data streams as di(t), where i runs over the channels of

the TDI basis. These quantities are real-valued functions defined on the interval [−τ/2, τ/2]
with τ being the duration of a data segment. The Fourier transforms of these data streams

are then given by

d̃i (f) =

∫ τ/2

−τ/2
dt e2πiftdi (t) . (5.3)

Our central assumption is that all transients including loud deterministic signals and

glitches in the noise are subtracted from the time stream through some appropriate meth-

ods within the LISA global fit scheme [55–57, 337–339].13 That is, as adopted in previous

studies [61, 62, 67, 328, 329, 332], the data considered in our analysis only contain the

stochastic contributions to the noise, ñνi , and the stochastic signal s̃σi due to the unresolved

binary signals and, possibly, the SGWB:

d̃i(f) =
∑

ν

ñνi (f) +
∑

σ

s̃σi (f) , (5.4)

10With realistic orbits, LISA will not be perfectly equilateral and arm-lengths vary at the percent

level [330] (see also Appendix A of [331]).
11To account for non-static arm lengths and the associated Doppler shifts, the second-generation TDI

variables [323, 324, 326, 333] would be required.
12The T channel does not remain a null channel in general with unequal and flexing arms and differing

noise levels in the different spacecraft, although other quasi-null channels are available [336].
13See Ref. [340] for the application of simulation-based inference to the SGWB search performed by LISA

in the presence of transient signals, which goes beyond the framework of purely stochastic analysis.
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where ν and σ run over different noise and signal components, respectively. In the following,

we will assume that all these components are stationary and obey Gaussian statistics with

zero mean and variance given by

⟨ñνi (f)ñν∗j (f ′)⟩ = 1

2
δ
(
f − f ′

)
P ν
N,ij(f) , ⟨s̃σi (f)s̃σ∗j (f ′)⟩ = 1

2
δ
(
f − f ′

)
P σ
S,ij(f) , (5.5)

where we define the one-side power-spectral density (PSD) (for i = j) and cross-spectral

density (CSD) (for i ̸= j) of noise and signal components as P ν
N,ij(f) and P

σ
S,ij(f), respec-

tively. Assuming all these components to be uncorrelated with one another, we obtain

⟨d̃i(f)d̃∗j (f ′)⟩ =
1

2
δ
(
f − f ′

)
[∑

ν

P ν
N,ij(f) +

∑

σ

P σ
S,ij(f)

]

≡ 1

2
δ
(
f − f ′

)
[PN,ij(f) + PS,ij(f)] ,

(5.6)

where PN,ij(f) and PS,ij(f) are the total noise and signal PSDs and CSDs. By denoting the

response functions for isotropic SGWB signals as Rij(f) (see Refs. [62, 341] for expressions

for this quantity), the SGWB (in either strain Sσ
h (f) or abundance Ωσ

GW(f)) projected

onto the data PSDs and CSDs can be expressed as

PS,ij(f) = Rij(f)
∑

σ

Sσ
h (f) = Rij(f)

3H2
0

4π2f3

∑

σ

h2Ωσ
GW(f) , (5.7)

whereH0 is the present Hubble constant and h is the normalized one asH0/h ≃ 3.24×10−18

1/s. Note again that under the assumptions stated above in this section, one finds that

Rij(f) is diagonal in the AET basis.

It is common practice to quantify the predicted primordial SGWB signal in terms of

h2ΩGW(f); therefore, for later convenience, we define

PΩ
N,ij(f) =

4π2f3

3H2
0

PN,ij(f) . (5.8)

In the following, we provide more detailed descriptions of the noise PSDs in the AET

basis and of the astrophysical foregrounds which are included in h2Ωσ
GW(f).

5.1.1 Instrumental noise

Our current knowledge of the LISA noise is based on the LISA Pathfinder [342] and lab-

oratory tests. As a first approximation, the stochastic component of the noise in each

TDI channel can be grouped into two effective components: “Optical Metrology System”

(OMS) noise and TM noise. The former accounts for noise in the readout frequency, such

as laser shot noise, while the latter models the noise sources causing accelerations of the

TMs, e.g., by environmental disturbances. Introducing the transfer functions for these two

noise sources T ν
ij,αβ(f) (for details, see e.g. Refs. [62, 327, 333, 343]), which project those

contributions onto the TDI channels, the total noise PSDs and CSDs can be expressed as

PN,ij(f) =
∑

ν

P ν
N,ij(f) =

∑

αβ

[
T TM
ij,αβ(f)S

TM
αβ (f) + T OMS

ij,αβ (f)SOMS
αβ (f)

]
. (5.9)
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As customary in the literature, we assume stationary, Gaussian, and uncorrelated

noises at each link with identical spectral shapes given by

STM
αβ (f) = 7.7× 10−46 ×A2

αβ

(
fc
f

)2
[
1 +

(
0.4mHz

f

)2
][

1 +

(
f

8mHz

)4
]
× s , (5.10)

SOMS
αβ (f) = 1.6× 10−43 × P 2

αβ

(
f

fc

)2
[
1 +

(
2mHz

f

)4
]
× s , (5.11)

where Aαβ and Pαβ represent the amplitudes of the TM and OMS noises in the different

links. Moreover, we have introduced fc ≡ (2πL/c)−1 ≃ 19mHz representing the character-

istic frequency of the detector. As mentioned above, we assume the noise amplitudes for

all links to be identical, i.e. Aαβ = Anoise and Pαβ = Pnoise, and, following the ESA mission

specifications [54], with fiducial values Anoise = 3 and Pnoise = 15. In this case, the noise

spectra reduce to STM
αβ (f) = STM(f,A) and SOMS

αβ (f) = SOMS(f, P ). With T ν
ij,αβ(f) in the

equal arm length limit, the PSDs in the AET basis read

PN,AA(f) = PN,EE(f)

= 8 sin2 x
{
4
[
1 + cosx+ cos2 x

]
STM(f,Anoise) + [2 + cosx]SOMS(f, Pnoise)

}
,

(5.12)

and

PN,TT(f) = 16 sin2 x
{
2 [1− cosx]2 STM(f,Anoise) + [1− cosx]SOMS(f, Pnoise)

}
, (5.13)

where we have defined x ≡ f/fc. Here the CSDs vanish, i.e. PN,ij(f) = 0 (i ̸= j), so that

the noise covariance matrix is diagonal.

5.1.2 Astrophysical foregrounds

Numerous weak and unresolvable signals from astrophysical sources will superimpose inco-

herently generating astrophysical SGWB [4, 344–350]. There are at least two guaranteed

components in the LISA band. Below a few millihertz, the dominant contribution will

come from Compact Galactic Binaries (CGBs) mostly composed of Double White Dwarfs

(DWDs) [351, 352]. At higher frequencies, another contribution is expected from all the

extragalactic compact objects including Stellar Origin Binary Black Holes (SOBBHs) and

binary neutron stars (BNS) [353]. In the remainder of this section, we provide the templates

for these foreground components implemented in the SGWBinner code that was recently

used in Refs. [67, 328, 329, 332].

Galactic foreground. This component represents the contribution from the unresolved

sub-threshold mergers of CGBs that remain after the removal of loud signals from the

population of CGBs in the galactic disk [354]. Due to the angular dependence of the

response functions and LISA yearly orbit, this component exhibits an annual modulation.

While, in principle, this characteristic can help distinguish the galactic component from

other stationary contributions, e.g., by accounting for variations in each segment [331,
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355, 356], we average over anisotropies, which leads to suboptimal (but conservative14)

foreground extraction. Similarly, because this foreground is formed by the superposition

of many unresolvable sources, it is expected to have Gaussian statistics. Recently, Refs.

[59, 361, 362] have called into question whether the populations entering the foreground

are sufficient for the central limit theorem to apply at all frequencies, and imply a Gaussian

description of the foreground may be biased. The non-stationarity of the foreground also

in principle induces some non-Gaussianity when time-averaging.

Nevertheless, we use the empirical model from Ref. [363], which describes the sky-

averaged and Gaussian contribution by

h2ΩGal
GW(f) =

1

2

(
f

1Hz

)2/3

e−(f/f1)α
[
1 + tanh

fknee − f
f2

]
h2ΩGal , (5.14)

where the value of f1 and fknee depends on the total observation time Tobs as

log10(f1/Hz) = a1 log10(Tobs/year) + b1 ,

log10(fknee/Hz) = ak log10(Tobs/year) + bk . (5.15)

The exponential factor e−(f/f1)α accounts for the loss of stochasticity at higher frequency

[363], while the last tanh term models the expected complete subtraction of CGBs signal

at frequencies f > fknee. In order to keep the notation compact, we define log10(h
2ΩGal) ≡

αGal. From Ref. [363], we set the fiducial values a1 = −0.15, b1 = −2.72, ak = −0.37,
bk = −2.49, α = 1.56, f2 = 6.7× 10−4Hz and αGal = −7.84.

Extragalactic foreground. The extragalactic foreground, arising from the incoherent

superposition of all extragalactic compact object mergers, includes potential contributions

from SOBBHs, BNSs, EMRIs, and DWDs in their inspiral phase. In this work, we focus on

only the SOBBH+BNS contribution, leaving any potential EMRI and DWD contribution to

future work. Recent studies suggest that extreme mass-ratio inspirals can largely contribute

to the foreground but only in somewhat extreme population synthesis scenarios [347].

Extragalactic DWDs may also be more abundant than previously estimated, with a relevant

impact on the extragalactic foreground [349, 364] which ongoing analyses are verifying [365].

In the lack of a firmer understanding, we assume these contributions to be below the

foregrounds of galactic binaries and extragalactic SOBBHs and BNSs.

We now focus on what we will assume to be the dominant contribution, the SOBBH

and BNS foreground. The vast majority of these signals cannot be individually resolved

by LISA [366–368] and, for the most part individual detections are possible for the few

multi-band sources [369] (see [370], for a more accurate study of such sources). The best

estimates for the populations of these objects are based on observations from ground-based

detectors [371, 372]. Due to the relatively uniform distribution of the sources and the

limited angular resolution of LISA, this component can be well modeled as an isotropic

14Keeping track of anisotropic nature of the signal, requires the analysis to be time-frequency. To con-

sistently work this out, one would also need to keep track of the non-stationary nature of the noise (see

e.g. [59, 357–360]) and the presence of gaps in the data.
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SGWB signal with the power-law shape

h2ΩExt
GW(f) = h2ΩExt

(
f

1mHz

)2/3

, (5.16)

where h2ΩExt is the amplitude at 1mHz. Recent observations by LIGO-Virgo-KAGRA

collaboration estimate the magnitude of SGWB signal from SOBBHs and BNS as [371]

ΩExt = 7.2+3.3
−2.3 × 10−10 at f = 25Hz . (5.17)

In order to keep the notation compact, we define log10(h
2ΩExt) ≡ αExt. Extrapolating this

amplitude to the LISA band [348], yields the fiducial value αExt = −12.38.

5.2 Analysis of the simulated data

In this section, we summarise the data analysis scheme implemented in the SGWBinner code

(see Refs. [61, 62] for more details). Let us start with the generation of simulated data.

Given the effective observation time Tobs and the number of segments Nd (which define the

duration of each segment τ = Tobs/Nd), the code generates the data d̃si (fk) (s = 1, ..., Nd)

segment-by-segment in the frequency-domain. For each frequency bin fk (spanning [3 ×
10−5, 0.5] Hz with spacing ∆f = 1/τ), Nd Gaussian realizations of the signal, noise, and

foregrounds are generated with zero mean and variances defined by their respective PSDs.

These data are then averaged over segments to define D̄k
ij ≡

∑Nd
s=1 d

s
i (fk)d

s∗
j (fk)/Nd, which

gives an estimate of the total power at all frequencies. The next step consists of coarse-

graining the data using inverse variance weighting. This results in a coarser set of frequency

bins fkij and a data set Dk
ij with weights nkij , retaining similar statistical properties of the

original dataset. Similarly to Refs. [62, 67, 328, 329, 332], we set τ = 11.4 days (∆f = 10−6

Hz), Nd = 126, and Tobs = 4 years in our analysis.

The likelihood employed in the code reads [62]

lnL(D|θ) = 1

3
lnLG(D|θ) +

2

3
lnLLN(D|θ) , (5.18)

with

lnLG(D|θ) = −
Nd

2

∑

i∈{AET}

∑

k

nkii

[Dth
ii (f

k
ii,θ)−Dk

ii

Dth
ii (f

k
ii,θ)

]2
, (5.19)

lnLLN(D|θ) = −
Nd

2

∑

i∈{AET}

∑

k

nkii ln
2

[Dth
ii (f

k
ii,θ)

Dk
ii

]
, (5.20)

where the index k runs over the coarse-grained data points and Dth
ii (f,θ) denotes the

theoretical predictions for the data, depending on some parameters θ. The model can be

further expressed as Dth
ii (f,θ) ≡ Rii h

2ΩGW(f,θcosmo,θfg) + PΩ
N,ii(f,θn), with θcosmo,θfg

and θn denoting the signal, foreground, and noise parameters, respectively. Notice that

the diagonality of the AET basis has been exploited, and no cross terms appear in the

likelihood. Given some priors π(θ) for the parameters, the posterior distribution reads

p(θ|D) ≡ π(θ)L(D|θ)
Z(D)

, (5.21)
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where Z(D) is the model evidence defined as

Z(D) ≡
∫

dθ π(θ)L(D|θ) . (5.22)

To compare the validity of two different models Mi(θi), each characterized by a set of

parameters θi, we can use the evidence Zi as a measure of the quality of the models given

the data. The Bayes factor for two models i, j is defined as Bij ≡ Zi/Zj . This Bayes factor

can then be compared to the Jeffreys’ scale [373] to determine which model is favored by

the data.

As key functionalities, the SGWBinner code offers i) model-agnostic signal reconstruc-

tion and ii) template-based signal reconstruction. The former fits the signal in each fre-

quency bin using a power-law template, i.e. the signal parameters are

θcosmo = {α1, nT,1, . . . , αn, nT,n} , (5.23)

with n denoting the number of bins. The number and width of the bins are dynamically

adjusted as described in Refs. [61, 62]. In practice, this method enables a preliminary

identification of the spectral shape of the signal, which can guide the choice of the template

for the template-based analysis. For the latter, the vector of parameters of the cosmological

component θcosmo corresponds to the template parameters.

In this work, we assume the fiducial noise and foreground parameters to be

θn = {Anoise, Pnoise}, θfg = {αGal, αExt}, (5.24)

while we assume that the other foreground parameters are known15, and θcosmo is model

dependent. Moreover, when fitting the simulated data, we use the same noise model applied

to generate the data.16 Both for the noise and foreground amplitudes, we assume Gaussian

priors centered on their fiducial values. For the former, we set the standard deviation

to be 20% of the fiducial mean value. For αGal and αExt, we set the standard deviation

to be 0.21 and 0.17, respectively. To sample the parameter space the code relies on the

Cobaya [374] inference framework. To facilitate template-based analysis specifically for

SIGW signals, we develop the dedicated SIGWAY code. As detailed in App. A, the SIGWAY

code implements the parameterization of curvature perturbations discussed in Sec. 3 and

performs the numerical computation of SIGW signals.

Finally, the code also supports Fisher analysis. In practice, the Fisher Information Ma-

trix (FIM) can be computed by the continuous integral over the frequency range, expressed

as

Fab ≡ Tobs
∑

i∈{AET}

∫ fmax

fmin

df
∂ lnDth

ii

∂θa
∂ lnDth

ii

∂θb

∣∣∣∣
θ=θfid

, (5.25)

where fmin and fmax represent the detector’s minimal and maximum measured frequencies,

assumed to be fmin = 3 × 10−5Hz and fmax = 0.5Hz [54]. If non-trivial (log-)priors

15The effect of loosening this assumption on the signal reconstruction has been discussed in Ref. [332].
16We note that any differences between the instrumental noise and the model could introduce bias. This

issue will have to be closely monitored in future upgrades of the code.
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are included in the analysis, the code consistently adds their derivatives to Eq. (5.25) to

obtain the full FIM. The relative uncertainty on the reconstruction parameters can then

be estimated from the covariance covab = F−1
ab . Given its computational efficiency, we also

employed the FIM approach to assess the prospect of signal reconstruction with some level

of accuracy. Note that in the case of SIGW signals, the FIM can be efficiently computed

using the automatic differentiation feature of the JAX library [375] by applying the θ

derivative in Eq. (5.25) directly to Pζ , before it is integrated to yield Ph. We stress that the

FIM formalism only works under the assumption that the likelihood is well approximated

by a Gaussian distribution in the model parameters around the best fit (and that, when

dealing with real data, the true values of the parameters lie within the region where the

FIM is evaluated).

Finally, to complement the visualization of relative uncertainties in the parameter

space, we will plot the signal-to-noise ratio (SNR) defined as

SNR ≡
√√√√Tobs

∑

i∈{AET}

∫ fmax

fmin

(
P σ
S,ii

PN,ii

)2

df , (5.26)

which scales linearly with the signal amplitude.

6 Results

In this section, we summarise our main results presenting different analyses based on the

SIGWAY code outlined in Sec. 5.2 (see App. A for more details). We adopt the three

approaches discussed in Sec. 3, namely i) binned spectrum agnostic approach; ii) template-

based approach; iii) first principle USR model of inflation – all limited to the leading order

SIGW and assuming an RD universe. We then consider specific examples including non-

standard early universe evolution and non-Gaussianities.

We report results for both ΩGW and Pζ . In the former case, we include the noise

curves as well as the foregrounds as discussed in Sec. 5. Since the SIGW backgrounds

we consider are emitted at very high redshift, when scales currently associated with mHz

re-enter the Hubble sphere, they contribute to the energy budget in the early Universe

and can affect cosmological observables as any other relativistic free-streaming component

beyond the standard model. In particular, the SIGW contributes to the effective number of

neutrino species as Neff ≡ 3.044+∆NGW
eff , with ∆NGW

eff = ρGW/ρν,1 and ρν,1 is the energy

density of a single neutrino species. Specifically, the total (integrated) GW abundance

is ΩGWh
2 ≃ 1.6 · 10−6

(
∆NGW

eff /0.28
)
[10]. Measurements of the CMB [293] and Baryon

Acoustic Oscillations (BAO) constrain ∆Neff ≤ 0.28 at 95% C.L. We report this bound for

reference as shaded gray regions in the ΩGWh
2 plots.

Strong primordial density perturbations can lead to the copious formation of PBHs

with masses of the order of the horizon massMH = 1.3×10−15M⊙
[
(k/κrm)/s

−1
]−2

, where

we kept track of the additional prefactor κrm ≡ krm ∼ O(3) that relates the perturbation

scale to the characteristic perturbation size rm at Hubble crossing [376–379]. Thus, the

overproduction of dark matter in the form of PBHs in the asteroid mass range implies
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Figure 3. Posterior predictive distribution for both ΩGWh
2 (left panel) and Pζ (right panel). We

represent the binned reconstruction of Sec. 6.1 in the case without an injected signal. The posterior

saturates the lower bound of the prior for the amplitudes Ai, due to the absence of a resolvable

signal. We therefore can only set upper bounds on both ΩGWh
2 and Pζ . The light blue line shows

the 95% credible intervals, while the pale black lines individual realisations of a signal sampled from

the parameters’ posterior distribution. The upper bound from ∆Neff is shown with a gray shading.

a bound Pζ ≤ O(10−2) [257, 380, 381] on the scalar curvature perturbations and thus

also on the strength of the SIGW in the mHz frequency band. The abundance and the

mass distribution of PBHs depend on the shape of the curvature power spectrum, non-

Gaussianities, and on the equation of state of the universe during their formation [28], so

does the implied upper bound on SIGWs.

6.1 Binned spectrum method

In Fig. 3 we report the constraints obtained with the binned method (see Sec. 3.1 and

4.4) when injecting no SIGW signal. This analysis forecasts the model-independent up-

per bounds on both the SIGW energy density spectrum (left panel) and the primordial

curvature power spectrum (right panel) in case of no SGWB detection at LISA: this only

relies on observational data, without assuming a specific signal model. For this analysis,

we assume that the spectrum is divided into N = 15 bins. The free parameters in this

model are

θcosmo = {A1, · · · , A15}. (6.1)

In the left panel of Fig. 3 we indicate the posterior predictive distribution for ΩGW with

the shaded light blue region, denoting the 95% credible interval (CI). The upper bound

effectively reflects the LISA sensitivity, which falls around two orders of magnitude below

the noise components in the AA channel because of the long observation time Tobs = 4yr

(see Sec. 5.2). In the right panel, we then show how the LISA sensitivity translates into

the Pζ parameter space. The figure displays the upper bounds on Pζ across the range of

momenta k considered, which is k ∈ [1.26 × 10−4, 6.28]/s. The posterior saturates at the

lower edge of the prior on the amplitude parameters Ai > 10−8 reflecting the absence of

detectable power beyond the noise level. The posterior predictive bands illustrate that the

– 34 –

Appendix

225



10−15

10−13

10−11

10−9

10−7

10−5

Ω
G

W
h

2
Posterior Predictives

Injected signal

AA

TT

Gal. foreground

Extragal. foreground

10−4 10−3 10−2 10−1

Frequency [Hz]

10−4

10−1

102

|Ω
G

W
−

Ω
in

je
c
te

d
G

W
|

Ω
in

je
c
te

d
G

W

10−7

10−6

10−5

10−4

10−3

10−2

P ζ

Posterior Predictives

Injected

10−3 10−2 10−1 100

k [s−1]

10−4

10−1

102

|P
ζ
−
P

in
je

c
te

d
ζ

|
P

in
je

c
te

d
ζ

Figure 4. Same as Fig. 3, but simulating the observation of a signal obtained in the benchmark

USR model scenario. The quantity Pζ is reconstructed with the model-independent binning method

with 15 bins. The blue band in the upper panels shows the 90% (symmetric) credible interval, while

the blue band in the bottom shows the 95% upper bound on the residuals.

method can constrain Pζ across several orders of magnitude in k. In the most sensitive

range, this bound reaches Pζ ≲ 2× 10−4.

This sensitivity is sufficient for probing a wide range of viable scenarios for asteroid

mass PBHs. In particular, a non-detection of a SIGW by LISA would close the asteroid

mass window for PBH dark matter formed from the collapse of moderately non-Gaussian

curvature fluctuations, including models of PBHs from first-order phase transitions [382–

384]. However, as with µ-distortion bounds on heavy PBHs [385–388], extremely strong

non-Gaussianities could enhance PBH production and potentially allow evading these con-

straints. Such extreme scenarios and their theoretical consistency should be studied case

by case.

In Fig. 4 we report the constraints obtained with the binned method when injecting the

benchmark SIGW signal derived from the single field USR model of Sec 2.4. The curvature

power spectrum has a BPL shape (see Eq. (3.7)), with a peak at around Pζ ∼ 2 · 10−3.

Again, we use a template with N = 15 bins. In the left panel of Fig. 4, we show the

injected SIGW signal (blue dashed line), along with the posterior predictive distribution

(light blue band). Although the low number of bins reduces the frequency resolution of our

model compared to the one achieved by LISA, the SIGW spectrum is well reconstructed,

reaching a precision of the order of a few percent around the peak. At the edges of the

observable range of frequencies, the blue bands widen up indicating a poor constraining

power on the tail regions. The right panel of Fig. 4 indicates the SIGW bounds translate

into four bins being well constrained in the range k ∼ [10−2, 10−1]/s with around O(10)%
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precision, while the other ones being subject to an upper bound of similar amplitude as in

Fig. 3.

One could in principle enhance the frequency resolution by using a template with a

larger number of bins, at the cost of drastically increasing the computational cost of the

Bayesian MCMC inference. In App. B we discuss these issues in more detail.

6.2 Template based method

In this section, we present a forecast on reconstructing the SIGW signal using a template-

based method, addressing different scenarios discussed in Sec. 3.2.

6.2.1 Smooth spectra

Lognormal scalar spectrum. The first signal injection we consider is a log-normal

shape of Pζ as defined in Eq. (3.5) with the benchmark values defined in Eq. 3.6, which

we report here log10As = −2.5, log10∆ = log10(0.5), log10
(
k∗/s−1

)
= −2. This produces

a loud signal with the typical double peak being fully within the LISA band. This choice

gives us a concrete measure of the precision that is achievable in measuring the SIGW

background in this scenario for a reasonably loud signal. The free parameters for this

approach are

θcosmo = {log10As, log10∆, log10
(
k∗/s−1

)
}. (6.2)
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Figure 5. Corner plot with the posterior distribution for an injected LN spectrum Pζ , as defined

in Eqs. (3.5) and (3.6). k∗ is expressed in 1/s units.
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Figure 6. Same as Fig. 3, for an injected log-normal spectrum, as defined in Eqs. (3.5) and

(3.6). In the left panel, we arbitrarily cut the posterior predictive where the signal falls below

ΩGW ≲ 10−15.

Fig. 5 shows the posterior distribution for each parameter of the LN template, alongside

the ones describing the galactic/extragalactic foregrounds. We omit in these plots the

posterior distributions for the noise parameters, as they are weakly correlated with the

others in all cases. The injected values are indicated with a dashed gray line. As we can

see, due to the relatively high SNR of the injected signal, the parameters of this template

are very accurately reconstructed, with Pζ being reconstructed with a relative error of a

few percent at its peak. The correlation between As and ∆ originates from the definition of

Pζ . As customary in the literature [255], the amplitude at the peak is As/∆, while As is the

integrated power spectrum
∫∞
−∞ Pζ d log k = As. Therefore, As enters the power spectrum

only through the ratio As/∆, thus the positive correlation between the two parameters.

Defining As to be the peak amplitude would avoid this degeneracy. The correlation of As,

k∗, and αGal is instead specific of our choice of fiducial parameters. As can be seen from

the posterior predictive distribution in the left panel in Fig. 6, the injected signal is close

enough to the galactic foreground that a slight increase in As with a decrease in k∗ can

be compensated by a small decrease in the background amplitude αGal. We expect that

these correlations fade away with a larger injected k∗, when the signal and the galactic

background are more distinct.

Fig. 6 shows the posterior predictive distribution for the SIGW (left panel) and curva-

ture power spectrum (right panel). We see that the signal reconstruction achieves better

than percent uncertainties on ΩGW and Pζ around the peak. The uncertainty on the low-

frequency tail of ΩGW saturates at around a few percent, due to the universal behavior of

the causality tail [389] sufficiently deep in the IR. See e.g. Appendix B of [67] for a dis-
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cussion of logarithmic corrections to the IR tail of the SIGW spectrum. The uncertainty

on the tails of Pζ remains low even at very small values, because of the rigid assumption

about the LN template.
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Figure 7. From left to right: Relative uncertainties of each of the parameters of the LN tem-

plate, computed with an FIM forecast injecting an LN Pζ with fixed amplitude log10As = −2.5
and varying k∗ and ∆. Black (purple) contours show uncertainties without (with) astrophysical

foregrounds. The white line indicates SNR values.

In Fig. 7, we scan the parameter space in k∗ and ∆ estimating the relative uncertainties

on all LN parameters using the FIMmethod. We fix the amplitude of Pζ to log10As = −2.5.
The SIGW amplitude scales like ΩGW ∼ A2

s, and in the high SNR limit we expect the

uncertainties on the parameter to scale inversely ∼ 1/A2
s. The results highlight the great

sensitivity that is achievable on a SIGW background if the peak lies around the peak

sensitivity of LISA, k∗ ∼ 10−3 − 10−1 s−1. In that range, the width ∆ for an LN scalar

spectrum can be measured with an accuracy of order 10% or better if ∆ ≲ O(1). Notice

from Fig. 7 that the purple contours, marking the sensitivity on the primordial SIGW

background accounting for astrophysical foregrounds, degrade when k∗ coincides with the

expected peak of the white-dwarfs (WD) galactic foreground, and the two GW backgrounds

are less distinguishable [390].
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Figure 8. Same as Fig. 5, but for a recovered BPL curvature power spectrum assuming an

injected signal motivated by the USR benchmark model. k∗ is expressed in 1/s units.

Broken power law. The second injected signal is a BPL that is derived from the USR

model discussed in Sec. 2.4 and 3.3, with input parameters as in Eqs. (3.7) and (3.8):

log10As = −2.71, log10(k∗/s−1) = −1.58, α = 3.11, β = 0.221, γ = 1.25. We reconstruct

the signal using a BPL template. The results of the reconstruction of the signal using the

USR model will be discussed below. The free parameters for this approach are

θcosmo = {log10As, log10
(
k∗/s−1

)
, α, β, γ}. (6.3)

In Fig. 8 we show a corner plot of the reconstructed parameters of the broken power-

law template, while Fig. 9 displays the posterior predictive distribution for the SIGW (left

panel) and curvature power spectrum (right panel). While the amplitude of the Pζ peak

As and the peak position k∗ are well reconstructed, the infrared (IR) spectral index α

and the smoothing coefficient γ are poorly constrained, and α and γ appear to be very

degenerate as the IR tail of the signal is hidden by the galactic foreground. This can be

seen in the corner plot of Fig. 8 as well as from the right panel of Fig. 9, where the slope for

k < k∗ has a large uncertainty. In order to reconstruct α and β with some precision, one

would need to be sensitive to the tails of the signal outside the peak region. This would

be only possible for a much larger signal, which nevertheless would have to compete with

stringent bounds from PBH overproduction. With the relatively low SNR injected here,

changes in the tilt can be traded for a smoother turnover around the peak, and vice versa.

– 39 –

Appendix

230



10−15

10−13

10−11

10−9

10−7

10−5

Ω
G

W
h

2
Posterior Predictives

Injected signal

AA

TT

Gal. foreground

Extragal. foreground

10−4 10−3 10−2 10−1

Frequency [Hz]

10−4

10−2

100

|Ω
G

W
−

Ω
in

je
c
te

d
G

W
|

Ω
in

je
c
te

d
G

W

10−8

10−7

10−6

10−5

10−4

10−3

10−2

P ζ

Posterior Predictives

Injected

10−3 10−2 10−1 100 101

k [s−1]

10−4

10−2

100

102

|P
ζ
−
P

in
je

c
te

d
ζ

|
P

in
je

c
te

d
ζ

Figure 9. Same as Fig. 3, but for an injected signal from a BPL Pζ , recovered using the BPL

template. The injected parameters are motivated by the USR benchmark model.

Furthermore, there is a residual correlation between β and γ, although it is less pronounced.

Biases in As, β, and αExt are also evident due to their degeneracy in the high-frequency

tail. Specifically, there is a tendency to reconstruct higher foreground values compared to

the UV part of the SIGW spectrum. Importantly, we have verified that this bias is not an

artifact introduced by the additional degeneracies induced by γ, which is correlated with

both tilts and amplitude. This conclusion is supported by tests we ran with γ fixed to its

injected value.

Notably, this bias does not appear when the same signal is reconstructed using the USR

model. The USR model is inherently less flexible, and its UV tilt is better constrained,

thereby mitigating the impact of degeneracies.

In Fig. 10 we show FIM estimates of uncertainties on the tilt parameters depending

on the injected BPL shape and k∗. Tilts and γ can be independently resolved only if one

observes with sufficient SNR the tail of the signal. Otherwise, a shallower (steeper) tilt can

be traded off for a smoother (faster) transition. For this reason, in part of the parameter

space explored in Fig. 10, we would obtain ill-conditioned FIM. In order to avoid this, only

in this case we remove γ from the parameters of the FIM and fix it to the injected value.

The left panel of Fig. 10 shows the absolute uncertainty achievable on α in the (k∗, α)
plane, and the right panel shows the same for β. We checked that these uncertainties do

not depend on the injected value for the other tilt parameter. The slope of the IR tail

of the GW spectrum is only mildly dependent on α, as discussed before, so most of the

sensitivity comes from the signal in the frequency range around the peak. For this reason,

the uncertainty on α reduces to 0.1 or better only if the SIGW is well within the LISA

range, and on the right of the galactic WD foreground (10−2 < k∗/s−1 < 10−1). Still,
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Figure 10. Uncertainty on α (left panel) and β (right panel) computed with the FIM approach for

the broken power law Pζ . The remaining parameters injected are those of the benchmark scenario

in Eq. (3.8). We fix γ to the injection to remove the degeneracies with the two tilts in the small

SNR regions of the parameter space.

it is very interesting to notice that steep values of the tilt, higher than α ≃ 1.5, which

are fully covered by the causality tail ΩGW ∼ f3 [389, 391, 392] in the SIGW spectrum

(up to log-corrections), can be well constrained, as information on the tilt is still retained

in the shape of the double peak feature of the signal close to the dominant peak. The

sensitivity to β (right panel of Fig. 10) is instead much better, as it determines the UV

slope ΩGW(f) ∼ f−2β. Therefore, β cannot be measured with an uncertainty smaller than

0.1 only if the SIGW lies outside LISA’s peak range (k∗ > 10−1 s−1) or if β ≳ −2, where
the SIGW background falls too quickly in the UV.

6.2.2 Spectra with oscillations

Turns in multi-field inflation. As a benchmark example of a primordial feature in the

power spectrum, we analyze a signal arising from turns in multi-field space as introduced

in Sec. 3.2.2. The free parameters for this analysis are

θcosmo = {log10As, log10
(
k∗/s−1

)
, δ, η⊥, F}. (6.4)

In Fig. 11 we show the posterior distributions for key parameters governing the sharp-

turn scenario in multi-field inflation, along with the foreground parameters. The injection

assumes the benchmark scenario where the parameters controlling the template (3.9) are

fixed as in Eq. (3.12). We see that in this case, the parameter F is constrained to be close

to unity with better than percent precision, showing the high sensitivity to the template

oscillations. In this case, the signal amplitude and central scale k∗ are weakly correlated,

while the former is still positively correlated to both δ and η⊥ which control the enhance-

ment factor. Due to the ideal location of the SIGW peak, we also observe weak correlations

between the foreground parameters and the signal parameters.

Figure 12 shows the posterior predictive distribution for ΩGW and Pζ . In this example,

the main peak of the SGWB lies within the LISA sensitivity band and above both astro-
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Figure 11. Same as Fig. 5, but for a simulated signal motivated by the multi-field scenario with

sharp turns from (3.9). k∗ is expressed in 1/s units.
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Figure 12. Same as Fig. 3, for the signal generated through a multi-field scenario with sharp

turns from Eq. (3.9).

physical foregrounds. As a result, both the shape and amplitude of the peak in ΩGW, along

with the O(20%) modulations, are reconstructed at the percent level. Since the frequency
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Figure 13. Fisher analysis for the oscillation template from multi-field inflation with turns. We

vary k∗ and As while keeping the remaining parameters fixed to the benchmark values (3.12).

of these modulations is linked to the oscillations in Pζ through the assumed thermal history

at horizon re-entry, the oscillations are also reconstructed with high accuracy–see the right

bottom plot. In this fortunate case, it would be possible to pinpoint the duration and

strength of the field-space turn, as well as the inflationary time scale of the phenomenon.

The latter is related to the oscillation frequency, as it is customary from the sharp feature

phenomenon, while the former two can be disentangled by combining the peak amplitude,

its location, and the frequency of the modulations.

Finally, the results of a Fisher analysis, highlighting the uncertainty in the parameter

F associated with the oscillatory behavior, are presented in Fig. 13. There, we vary the

power spectrum amplitude As and the position of the main peak, while keeping the other

parameters fixed to the benchmark values discussed just above. This simplification is useful

for illustrative purposes, as the parameters in the current model are not independent.

Notably, when the signal is centered near the LISA sweet spot at log10(k∗/s
−1) ≃ −2,

the oscillations can be accurately detected even with a moderate enhancement such as

log10As ≃ −3.

Rapid transitions between SR and USR phases. The other injected spectrum with

oscillatory features is characteristic of single field models with fast transitions from an SR

to a USR phase described by Eqs. (3.13), (3.14). The free parameters for this analysis are

θcosmo = {log10As, log10
(
k∗/s−1

)
, νI, νII, F}. (6.5)

We consider the benchmark scenario with the input parameters listed Eq. (3.18): log10As =

−2.58, log10(k∗/s−1) = −2.02, νI = 1.95, νII = 1.61, γ = 1.67, F = 1. We perform the

MCMC Bayesian inference modelling of the signal using the template (3.14), which allows

us to turn on the oscillations smoothly by varying the parameter F from 0 to 1. The value

F = 0 corresponds to a featureless BPL similar to the one considered above. Furthermore,

we fix γ as the strong degeneracy between α and γ (see Fig. 8) makes sampling challenging

and since our main concern lies in constraining F .
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units. Note the injected value F = 1 is not visible sitting at the edge of the plot.

10−15

10−13

10−11

10−9

10−7

10−5

Ω
G

W
h

2

Posterior Predictives

Injected signal

AA

TT

Gal. foreground

Extragal. foreground

10−4 10−3 10−2 10−1

Frequency [Hz]

10−4

10−2

100

|Ω
G

W
−

Ω
in

je
c
te

d
G

W
|

Ω
in

je
c
te

d
G

W

10−8

10−7

10−6

10−5

10−4

10−3

10−2

P ζ

Posterior Predictives

Injected

10−3 10−2 10−1 100

k [s−1]

10−4

10−2

100

|P
ζ
−
P

in
je

c
te

d
ζ

|
P

in
je

c
te

d
ζ

Figure 15. Same as Fig. 3, for the signal generated through a fast transition from SR to USR

from (3.14). Both Pζ and ΩGW are reconstructed very well.

In Fig. 14 we show the posterior distribution for each parameter of the signal and

foregrounds. First of all, we see the parameter F controlling the relevance of the oscillations
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Figure 16. Absolute uncertainty on F estimated using the FIM for the oscillation template from

a sharp transition between SR and USR. We vary log10 k∗ and log10As while keeping the remaining

parameters fixed to the benchmark values (3.18).

over the smooth BPL is very tightly constrained around unity. This tells us the presence of

oscillations can be resolved with high accuracy for such a high-SNR signal. The sensitivity

to oscillations is mainly driven by the dominant peak, as we will discuss in the following.

We also find tight correlations between the parameters, which are non-trivially connected

in the signal template (3.13). In particular, we observe a strong correlation between the

BPL tilts and the amplitude, due to the large impact of the former on the overall amplitude

of the dominant peak. The negative correlation in the (As, k∗) plane is probably induced

by the way the dominant peak, contributing to most of the SNR, can be adjusted, as one

could lower the characteristic scale by enhancing the amplitude.

In Fig. 15 we show the posterior predictive distribution for both ΩGW and Pζ . The

presence of a dominant peak at scales around k∗ in the right plot leads to a distinctive large

enhancement of the SIGW signal around peak frequencies seen in the left plot. Additional

oscillations in the SIGW spectrum can be observed at larger frequencies, although the

second-order emission soon washes out further oscillations in the UV tail. The residuals

of ΩGW show that the IR tail of the signal is reconstructed at around the percent level,

with a flat behavior due to the causality tail dominating the IR. On the other hand, the

relative deviation grows larger than O(10)% percent in the UV part of the plot, due to the

finite precision at reconstructing νII. The best accuracy is obtained around the peak, as

expected. Correspondingly, in the right plot, Pζ is reconstructed with better than percent

accuracy around the peak, while the reconstruction degrades in both tails. The oscillations

are reconstructed for a few cycles in k, while they are lost in the UV as seen in the bottom

panel showing the relative deviation from the injected signal. The envelope of the out-of-

phase oscillations behaves following the underlying power-law tail. Note that the tails are

reconstructed better than in the pure BPL scenario, as in this template (3.14), the shape

of the dominant peak also brings information on the parameter νI,II controlling the tails.

We perform a Fisher analysis focusing on the uncertainty on F , by varying log10As

and log10 k∗, see Fig. 16. The oscillations are very well recovered, to O(10−2) uncertainty,
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if the peak of the signal falls within the LISA band. This is because the oscillations in Pζ
translate into oscillations mainly around the peak in the SGWB, as visible in Fig. 15.

6.3 Single field USR inference

In Fig. 17 we show the reconstruction capability of the USR model parameters of Sec. 2.4,

obtained by running a MCMC Bayesian inference using the USR inflationary model with

free parameters

θcosmo = {λ, v, bl, bf}. (6.6)

controlling the inflaton potential. We assume that the CMB scale crosses the Hubble sphere

N = 58 e-folds before the end of inflation. We therefore avoid modelling the reheating era,

and postopone its inclusion for future work (see e.g. [393]). The input values determining

the injected signal were introduced in Eqs. (2.4) and (2.6), but we report them here for

convenience: λ = 1.47312× 10−6, v = 0.19688, bl = 0.71223, bf = 1.87× 10−5.

We understand the results as follows. The height of the peak in Pζ is proportional to λ
and it is also sensitive to the tuning of bf .

17 This results in the negative correlation between

λ and bf . The self-coupling λ can be constrained, even though with only O(1) precision,

because it controls the slope of the potential and therefore the SR parameter ηH before

the inflection point, which determines the growth of Pζ before the peak as discussed below

Eq. (3.7). The parameters bl and v appear to be strongly correlated, meaning that the

linear term in bl/v in Eq. (2.4) gives the dominant dependence on bl in the potential. The

galactic background is well reconstructed due to its large magnitude, while the extragalactic

one is completely hidden by the USR signal.

Figure 18 shows the posterior predictives in ΩGWh
2 and in Pζ . It is interesting to

compare the right panel of this figure with that of Fig. 9, which is obtained with the same

injected signal but a different template for the reconstruction. In the present case, the

spectrum of scalar perturbations Pζ is reconstructed with excellent precision, even if LISA

is sensitive only to the peak. This comes from the fact that the spectrum for the USR

model has a universal slope ∼ k4 in the IR, whereas the IR slope is a free parameter for

the BPL model.

The relatively large uncertainty on the overall potential amplitude V (ϕ) in Fig. 19 is

due to the degeneracies between the overall scale V0 ∼ λv4 and the parameter bf controlling

the enhancement. As we are only constraining the enhanced part of the spectrum, there is

a tight correlation between λ and bf . Adding information from CMB data in the inference

would reduce this uncertainty by adding an independent constraint on V0.

Comparison between different methods. We can compare the performance of differ-

ent methods when fitting the same injected signal, which is taken to be the USR benchmark

scenario. In Fig. 20 we show the upper bound at 95% C.L. on the relative difference between

the posterior predictive distribution and the injected signal for the binned, template-based,

and ab initio USR approaches.

17With other potential parameters fixed, we did find the approximate behavior Pζ ∝ (1 − bf/bf,∗)
−n

in the parameter region supporting peaked Pζ . Here, bf,∗ and n > 2 are parameters that depend on the

remaining parameters of the potential. Such scaling is observed in other models [123].
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Figure 17. Same as Fig. 5, but for the USR reconstruction of the benchmark scenario.
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Figure 18. Same as Fig. 3, but for the USR reconstruction of the benchmark scenario.

We observe that the binned method provides a competitive constraint on ΩGWh
2 in the

central frequencies close to the peak (barring oscillations induced by the poor resolution

associated with choosing 15 bins). However, the constraint quickly degrades at both ends,
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Figure 20. Comparison of the residuals between the three different methods for recovering the

signal injected assuming the benchmark USR model.

due to the unconstrained curvature spectral amplitude there. The template-based method

(assuming a priori a SIGW from a BPL scalar power spectrum) improves the reconstruction

of the tails, but results in an overall loss of precision of a factor O(6) with respect to the

posterior predictive derived assuming the USR scenario. This is most probably due to the

larger number of parameters in the BPL template compared to the USR model, and the

known degeneracy between γ and the two tilts around the peak.

Also, Pζ , shown in the right panel, is most tightly constrained when using the USR

model, showing the effectiveness and robustness of our analysis pipeline in reconstructing

the injected high SNR signal. The BPL template gives an intermediate result on the IR tail,
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which, however, degrades much faster than USR, due to the limited information on the tail

of the SIGW, which is mostly controlled by the causality tail. Finally, the binned method

gives a worse reconstruction of both the IR and UV tail, due to the small information

within the LISA band about these regimes, and the independence assumed in this method

between the central bins (best constrained) and the ones on the sides.

Overall, the binned method proves to be a powerful approach to explore the interpreta-

tion of a primordial background at LISA within a more agnostic approach. The comparison

with specific SIGW templates does not significantly outperform the binned method for the

range of frequencies around the peak, which are the best constrained by LISA. However,

consistently with expectations, adopting the correct USR model provides greater accuracy

in capturing the features of the signal, leading to a more precise reconstruction. These find-

ings demonstrate the power of also adopting inference analyses based on explicit ab initio

models (of which USR is just an example) that could outperform traditional template-

based approaches. This, of course, assumes one can identify the best early universe model

through model comparison. We will come back to discussing how to compare different

scenarios in Sec. 7.

6.4 Non standard thermal histories

Using information on the SIGW spectrum, LISA would be able to challenge the vanilla

assumption that the SIGW was emitted during a RD era. As discussed in Sec. 4, the kernels

entering the computation of the SIGW spectrum bring information about the equation of

state around the epoch of SIGW emission.

A sudden transition from eMD era to the RD era. We exemplify this case by

showing how LISA can constrain the SIGWs emitted within an alternative thermal history

by considering an early period of matter domination (eMD). We further assume sudden

reheating, as introduced in Sec. 4.3. As we discussed, during this eMD epoch Φ does not

decay, leading to an enhancement of the SIGW spectra around the scale k ≳ 1/ηR. We

take as a benchmark a nearly scale-invariant spectrum Pζ , with a cutoff at placed at kmax.

We simplistically describe the spectrum as

Pζ(k) = AsΘ(kmax − k) , (6.7)

with benchmark parameters

As = 2.1× 10−9, ηR = 2000 s, kmax = 0.06 s−1. (6.8)

Therefore the free parameters to examine in this case are

θcosmo = {As, kmax, ηR}. (6.9)

Our phenomenological parametrization should be regarded as a toy model, with the

UV cut-off scale kmax introduced to ensure perturbativity, as assumed when computing the

SIGW. For this reason, given the fact that the energy density contrast grows linearly with

the scale factor during a MD era, i.e. δρ/ρ ∝ a, one can associate kmax as the scale at which
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Figure 21. Left panel: Same as Fig. 5, but for the case of a nearly scale-invariant power

spectrum and a sudden eMD to RD transition. kmax and ηR are expressed in units of s−1 and s,

respectively. Right panel: Corresponding posterior predictive distribution for ΩGWh
2. The notation

used matches the one in Fig. 3.

the power spectrum of density contrast becomes unity, i.e. Pδ(kmax) = 1 [302, 303, 394],

although our actual choice is slightly more restrictive. One then can easily understand why

kmax depends on the scale we are probing, as the source is largest for modes that spent

the most time within the horizon during the eMD era. While we do not model the non-

linear part of the spectrum, it may lead to further observational signatures [211, 395–397].

Finally, the template (6.7) can be made more realistic by introducing a smooth cut-off.

The parameters of this template are accurately reconstructed as shown in Fig. 21 (left

panel). We notice that ηR and As are strongly correlated, as the duration of the MD

signal directly controls the growth of perturbations emitting SIGWs, which is therefore

degenerate with the primordial amplitude. The cut-off scale is also strongly constrained,

with a marginalised posterior distribution which is flat within a narrow range of scales

corresponding to the resolution adopted in this forecast. It should be kept in mind, however,

that more realistic spectra would feature a smoother drop-off, alongside a contribution from

non-linear scales not included here, thus jeopardizing the relevance of the constraining

power on kkmax. In the right panel of Fig. 21, we show the posterior predictive distribution

for the SIGW. We find the reconstruction to be accurate up to the cutoff scale (better than

a few %). The SIGW spectrum is reconstructed well in the large-scale approximation, with

the resonant amplification improving accuracy by an order of magnitude. The resonant

peak is reconstructed with a larger accuracy due to its milder model dependence and due

to its tilt being controlled by the resonant conditions (see discussion around Eq. (4.23)).

Moreover, that part of the signal appears with a larger SNR in the LISA detector. The

associated Pζ is accurately reconstructed as a flat spectrum with a maximum relative error
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of order 10%.

Our numerical pipeline can also be applied to other scenarios for the thermal history

of the early Universe. Of particular interest would be the study of time-dependent EoS

parameters on the SIGWs, like in the case of smooth-crossovers [398, 399], analogous to

the QCD phase transition.

6.5 Non-Gaussian effects on SIGWs

As discussed in Sec. 4.5, the tensor power spectrum of SIGWs receives contributions from

the four-point correlation function of curvature perturbations. This contribution can be

split into disconnected and connected terms. While the disconnected one depends only

on the scalar power spectrum, the connected part arises from the primordial trispectrum,

i.e. it is sensitive to primordial NG. And, as stressed in Sec. 4.5, for local NG, τNL would

be the key observable to extract a constraint on NG from SIGWs. However, when the

curvature perturbation originates from a single fluctuating degree of freedom beyond the

inflaton, the parameters τNL and fNL are connected as measures of higher-order correlations

in the curvature perturbation, satisfying the relation τNL =
(
6
5fNL

)2
, which saturates the

Suyama-Yamaguchi inequality [400]. This relation has relevant implications for SIGWs,

generated by models characterized by local-type NG, since observational constraints on

one parameter can indirectly provide bounds on the other, assuming a given model. In

the following analysis, we adopt the strategy of performing the analysis considering fNL

as a parameter of the model and assume the shape (4.38) of the full power spectrum. We

then discuss the implications for τNL that derive from the constraints on fNL. In this case,

we assume the curvature power spectrum to have a LN profile, (see Eq. 3.5)18 and as free

parameters we use

θcosmo = {log10As, log10∆, log10
(
k∗/s−1

)
, fNL ≡ 5/6

√
τNL}. (6.10)

The left panel of Fig. 22 shows the absolute uncertainty associated with fNL varying the

parameter fNL against log10(k∗) computed using the FIM method. We fix the amplitude

of Pζ to log10As = −2 and the width to log10∆ = −0.75. The dashed black (purple)

contour lines represent the relative percentage error associated with fNL when astrophysical

foregrounds are not included (or are included). The white vertical line indicates the SNR.

Notice that for small and large values of k∗, fNL exhibits higher uncertainties, whereas the

intermediate range of k∗ ∼ 10−2 − 10−1 s−1 shows the minimal uncertainties for fNL. This

suggests that tight constraints on fNL can only be achieved within this specific range of

k∗. Outside of this range, the errors increase notably, indicating less reliable measurements

for fNL. Even in the optimal case, the reconstruction of fNL only reaches the percent level

for large fNL ≳ 12.5 . Notice that, in the presence of foregrounds, the accuracy on fNL

18Note that our choice of the LN Pζ assumes that the dimensionless primordial curvature fluctuations –

including the higher order term coming from the trispectrum (the left-hand side of Eq. (4.38) multiplied by

k3/2π2) – describe a lognormal. This practically isolates the effect of computing Pζ including non-Gaussian

contributions ab-initio from the effect caused by a NG contribution on the computation of ΩGW given Pζ .

We will also compare our results to the LN case where only the Gaussian contribution is considered.
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Figure 22. Left panel: Absolute uncertainties of each of the parameters in the case of an injected

signal which includes NG and assuming the LN template with parameters fixed to log10As = −2 and
log10 ∆ = −0.75. Right panel: Same as the left panel, but varying ∆ instead of k∗, for an injected

signal which includes NG and assuming the LN template with parameters fixed to log10As = −2
and log10(k∗/s

−1) = −1.4.

slightly degrades, in particular when k∗ coincides with the expected peak of the galactic

foreground, i.e. when k∗ ∼ 10−2.2 s−1 .

Similarly, the right panel of Fig. 22 shows the FIM absolute uncertainty associated with

fNL varying the parameter fNL against log10∆. We fix the amplitude of Pζ to log10As =

−2 and the peak scale to the optimal location log10(k∗/s
−1) = −1.4. In this case, the

uncertainty when estimating fNL is lower (≲ 30%) in the region of log10∆ below −0.3,
while it significantly degrades for larger widths. This suggests that the most stringent

measurements of fNL will be obtained for relatively narrow curvature power spectra.

Given the relation between fNL and τNL, improvements in the precision of the for-

mer directly translate into tighter constraints on the latter. The FIM analysis shows that

percent-level accuracy on fNL is achievable only for large fNL, which in turn would corre-

spond to a percent-level constraint on τNL. In favorable scenarios –where the peak scale

k∗ lies within 10−2 − 10−1 s−1 and the spectral width log10∆ is relatively narrow – uncer-

tainties in fNL are minimal, restricting the allowed range of τNL. Conversely, when fNL is

less precisely determined, τNL remains poorly constrained.

The corner plot in Fig. 23 illustrates the posterior distributions of the SIGW sig-

nal parameters {log10As, log10(k∗/s
−1), log10∆}, including the primordial NG parame-

ter fNL, alongside the extragalactic and galactic background amplitude energy densities

log10(h
2ΩExt) ≡ αExt, log10(h

2ΩGal) ≡ αGal. As in the other cases, we omit the LISA noise

parameters Anoise, Pnoise from the corner plot as they are tightly constrained and weakly

correlated with the rest. As first benchmark, we injected a template with log10As = −2,
log10∆ = −0.75, log10(k∗/s−1) = −2.3 and fNL = 1. On the right panel of Fig. 23, we

report the corresponding reconstructed ΩGWh
2. For comparison, we also plot the GW

energy density in the Gaussian case. Due to the low value of fNL chosen, the reconstructed

and Gaussian curves are almost superimposed, showing that the effects of NG are quite
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Figure 23. Posterior distribution for an injected signal which includes NG, fNL = 1 and assuming

the LN with log10As = −2, log10 ∆ = −0.75, log10(k∗/s−1) = −2.3.

mild in this case.

The marginalized posterior for fNL exhibits a broad posterior distribution, ranging

from −5 to 5. This distribution indicates a large uncertainty in fNL spanning roughly ±3
at the 68% C.L. and is compatible with fNL = 0. This suggests a limited constraining

power of LISA on fNL. For such a signal, the posterior shows a bimodal structure, that

arises because fNL enters quadratically in the GW spectral energy density through the

trispectrum. As the observed value suggests compatibility with a Gaussian primordial

distribution, the broad posterior distribution also implies that ruling out moderate NG

will be challenging, emphasizing the need for improved precision or additional data to

refine these estimates. The other parameters, such as the log-amplitude of the seed power

spectrum (log10As), show a remarkable reconstruction, in line with the results of Sec. 6.2.1.

Note however that we are injecting different values of {log10As, log10(k∗/s
−1), log10∆}.

For a comparison to the fully Gaussian case with the same injection in Pζ see Fig. 30. The

effect of adding the small NG correction fNL = 1 on the recoverability of power spectral

parameters {log10As, log10(k∗/s
−1), log10∆} and foreground parameters {αGal, αExt} is

small in this case, indicating that a small NG contribution does not spoil the reconstruction

of curvature power spectra parameters. This also indirectly supports our choice of not

including NG corrections in the benchmark USR scenario discussed in Sec. 3.3, which

is characterized by fNL ≃ 0.09. However, notice the visible non-zero correlation between

fNL and both {log10As, αGal}. The joint posterior fNL - log10As reflects the multimodality

induced by the double peak structure of fNL. Nevertheless, LISA can still strongly constrain

the amplitude of the non-linear power spectrum. Hence the detection of the GWB is not

strongly influenced by the primordial NG, which is beneficial for simplifying the analysis
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Figure 24. Same as Fig. 23 with fNL = 10. Note that there is a second, identical mode at

fNL = −10 as only the square of fNL enters ΩGW. We omitted this mode.

when considering models predicting small NGs.

The posterior distributions for astrophysical foreground amplitudes are broader and

show limited correlation with signal parameters. In contrast, instrumental noise parame-

ters are tightly constrained and largely independent of signal estimation. This decoupling

ensures robust estimation of the signal amplitude, enhancing the reliability of SGWB de-

tection despite noise uncertainties.

Overall, the joint distributions show only weak correlations, indicating that each of

these parameters can be inferred with a good degree of independence from the others.

The situation changes when considering a larger value of fNL, as shown in Fig. 24.

Specifically, we run the MCMC with the following injected template with log10As = −2,
log10∆ = −0.75, log10(k∗/s−1) = −2.3 and fNL = 10, differing from the previous bench-

mark only in the choice of fNL. On the right panel, we report the reconstructed ΩGWh
2

as well as the Gaussian counterpart for comparison. Given the higher value of fNL, the

differences are now more evident, resulting in an enhancement of the UV tail, but also in

a slightly higher peak and more smoothed minimum (not visible in Fig. 24). Now, the

marginalized posterior distribution for fNL shows only a narrow spread indicating that the

estimate of fNL is precise. The absolute value of fNL has a mean reconstructed value that

varies about ±0.8 at the 68% C.L. which makes it incompatible with fNL = 0.

As with the previous case, the non-linear power spectral parameters are tightly con-

strained and no significant bias is observed with respect to the injected values. Both k∗
and ∆ are very weakly correlated with fNL, suggesting that their reconstruction is not

heavily influenced when fNL is large. However, log10As shows a larger anti-correlation

with the fNL. An anti-correlation also appears between fNL and αGal, probably induced by
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the similar IR shape behavior. The tighter constraints associated with such a signal imply

that higher levels of NG are easier to constrain, yielding clearer and more reliable effects.

The independence between fNL and other parameters (except for log10As), indicated

by the weak correlations, suggests robustness in parameter estimation. This means that

uncertainties in fNL do not drastically affect the inference of other parameters, resulting in

more precise parameter constraints compared to the fNL = 1 case. When fNL is larger, the

signal is more distinct, allowing for setting more stringent constraints on primordial NG.

Note that the prior in Fig. 24 is restricted to positive values of fNL. Similarly to Fig. 23 the

posterior distribution has a second mode at fNL = −10 since it only enters quadratically

in the signal.

For the amplitude As considered in this case, the imprints due to possible inaccuracies

in accounting for the full non-Gaussian behavior for some models of inflation are expected

to be negligible when fNL = 1, but could be substantial when fNL = 10, as recently argued

by [68]. For this analysis, we neglected those refinements. We further stress that for the

enhanced amplitude of the power spectrum considered here, fNL = 10 represents much

larger deviations from Gaussianity than on CMB scales, because the expansion parameter

determining the relative size of the trispectrum versus power spectrum is τNL · Pζ . It is of
order one in the current context, while less than 10−4 on CMB scales.

Concerning the implications for τNL, large uncertainties in fNL directly translate into

poor constraints on τNL. For example, for fNL = 1 with a quite broad uncertainty of ±3,
τNL could span from values close to zero (if fNL ≈ 0) up to ≃ 23 (if fNL ≈ 4), making

it challenging to clearly identify a primordial NG signal. In this range, even moderate

NGs become difficult to distinguish from a Gaussian spectrum. Without improved preci-

sion on fNL, the corresponding τNL will remain poorly determined, limiting our ability to

discriminate between different levels of primordial NG. When fNL = 10, providing a more

pronounced non-Gaussian signal, the corresponding τNL =
(
6
5 · 10

)2
= 144 is now much

more tightly constrained. Since the uncertainty in fNL is roughly ±0.8, τNL varies up to

a ±15% range. This tighter range is obviously better than the scenario with small fNL.

Hence, larger fNL values significantly improve our ability to determine τNL, allowing LISA

to better distinguish between different levels of primordial NG in the SGWB.

Finally, it is important to highlight that while Planck provides constraints that are

very close to zero [254], indicating no evidence for primordial NG at large scales, the

analysis we are performing for LISA focuses on NG at much smaller scales. LISA’s ability

to provide tight constraints on fNL suggests that GW detection could play a crucial role

in refining our understanding of primordial NG, particularly in scenarios where the signal

is expected to be strong. In addition, the sensitivity of LISA to different scales compared

to Planck provides an important cross-check, helping to verify any scale dependence for

fNL [401, 402]. Overall, while Planck remains a benchmark for CMB-based constraints on

fNL at large scales, LISA shows the potential of GW detectors to significantly advance the

search for, and the characterization of primordial NG.
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7 Testing the scalar-induced hypothesis

In this section, we outline a procedure to test the compatibility of the SIGW hypothesis

with a possible SGWB detection. So far, our analysis assumed that the cosmological

contribution of the SGWB originates from SIGWs. There are, however, many alternative

sources of the SGWB that originate from different physical processes in the early universe.

Our goal is to offer a practical approach for assessing the validity of the hypothesis explored

in this work—namely, whether or not a hypothetically detected signal originates from

enhanced scalar fluctuations of inflationary origin. To this end, we focus on two illustrative

scenarios that are distinct in nature, leaving a detailed comparison of various early-universe

signals—which is beyond the scope of this paper—for future work. We use the evidence

(5.22) as an estimator for model selection. Specifically, given an injected signal, we consider

different reconstruction techniques, for which we can compute the (log) evidence using the

nested sampler PolyChord [403, 404].

It is important to note that the Bayes factor is a global estimator: it not only assesses

the goodness of fit of a model to the data but also incorporates information about the prior

volume and its compression as the prior transitions to the posterior. Additionally, given a

similar fit to data, it naturally favors simpler models—those with fewer parameters—over

more complex ones.

In the following analysis, the different approaches follow two distinct philosophies,

depending on whether they assume, or not, that the signal originates from scalar-induced

GWs:

1. Using the SGWBinner code [61, 62] we can use both a template-based [67], as well as a

model-agnostic approach to reconstruct the signal in ΩGW. This does not assume the

underlying physics. The templates we use to fit the model in this case are informed

by the injection, that is known to us. Of course, with real LISA data, these will be

several shapes that are informed by physical processes that can potentially generate

SGWBs. On the other hand, the binned approach of the SGWBinner divides the

frequency space into bins by SNR and then fits a power law within each bin. This

results in an agnostic reconstruction of ΩGW.

2. By contrast, the various techniques presented in the previous sections assume that the

signal we are considering is coming from SIGWs. Somewhat like with the SGWBinner,

we can reconstruct the SGWB with the SIGWAY in two different ways. One option

is to use a template-based approach (see Sec. 3.2), in which a template for Pζ is

specified. A second possibility is to use the Pζ-agnostic (still assuming SIGW to be

the source of the SGWB) binned approach, as described in Sec. 3.1.19 We choose the

19Let us note that there is a slight difference in the implementation of the binned Pζ(k) approach,

compared to the binned ΩGW. In the latter approach, the SGWBinner code dynamically selects the optimal

number of bins before the nested sampling, based on the Akaike information criterium [405] (we refer the

interested reader to the discussion around Eq. (3.6) of [61] for more details). On the other hand, such a

feature has not been implemented in the SIGWAY code, as there are fundamental difficulties to attempting

a similar approach in Pζ-space (see App. B for a detailed discussion) so the number of bins for Pζ(k) has

to be chosen by hand.
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Package Method
Case 1: not SIGW signal Case 2: SIGW signal

log
[
Z(ΩLN

GW)
]
/104 log

[
Z(PLN

ζ )
]
/104

SGWBinner
Template 0.5444 −0.5278
Binned −0.5625 −0.5479

SIGWAY
Template −25.6078 −0.5203
Binned −25.7934 −2.712

Table 1. log Bayes factors (normalized to a reference value 104) comparing the SGWB recon-

struction (either using the injected model as a template, or a model-agnostic binned method) with

the SIGW reconstruction for two signals: i) a log-normal power spectrum in ΩGW which cannot be

generated by SIGW (within the assumptions we are working in), ii) a log-normal power spectrum

in Pζ which generates detectable SIGW. In bold we show the Bayes factors for the recovery which

assumes the injected template. As expected, they are the best reconstructions for each injection.

number of bins Nbins = 40. For simplicity, in this Section, we assume the SIGW to

be produced during the radiation-dominated era.

For illustrative purposes, we simulate the following two qualitatively different signals:

• Case 1. Not SIGWs. The first is a narrow lognormal in ΩGW(f). This injection

serves as an example of a signal that cannot be produced by SIGWs, assuming the

modes reenter during RD. In this case, regardless of how narrow the peak in Pζ is,

the generated SIGW will always exhibit the so-called “causality tail” proportional

to f3. As a benchmark for this injection, we chose to reproduce the main peak

of the double-peak background shown in the top-left panel of Fig. 11 in [67], with

a slightly lowered amplitude. This amounts to choosing the following parameters:

log10(h
2Ω∗) = −9.5, log10(f∗/Hz) = −2.21, log10(ρ) = −1.10 in Eq. (2.8) of [67]. We

will henceforth call this signal ΩLN
GW.

• Case 2. SIGWs. The second injection is instead derived from a SIGW scenario.

We inject a lognormal power spectrum of curvature perturbations, see Eq. (3.5)

and compute the resulting SGWB numerically. The power spectrum parameters

used were: log10As = −2.3, log10∆ = −0.70, log10(k∗/s
−1) = −1.5. The re-

sulting shape in the SGWB can be described through the double-peak template

in Eq. (2.10) of [67], with parameters {log10(h2Ω∗), log10(f∗/Hz), β, κ1, κ2, ρ, γ} =

{−9.5,−5, 0.242, 0.456, 1.234, 0.08, 6.91}. With this choice, the main peak of the

SIGW coincides with the injection of Case 1.

We fit each of the two injections using the four models specified above. The results of

our analysis are summarized in Fig. 25 (see also Fig. 31 in App. D showing the reconstruc-

tion including foregrounds), and Tab. 1, which we now comment in order.

Let us begin with Case 1. The models that perform the worst in terms of model

selection are the two based on the SIGW hypothesis (marked by the row SIGWAY). As

shown in the left panels of Fig. 25, both the lognormal and binned Pζ(k) models attempt
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Figure 25. Reconstruction of ΩGW for case 1 (left) and case 2 (right). We only show the recon-

struction of the injected cosmological contribution to the SGWB. It is clearly visible that the two

models that assume SIGWs cannot reconstruct the narrow log-normal peak in case 1 and therefore

lead to much lower evidence. We denote the wrapper to perform the analysis using SIGWAY as

SIGWBinner in this plot.

to fit the lognormal SGWB using the primary peak of the SIGW. However, the secondary

peak at lower frequencies severely undermines the fit to the data, resulting in a very poor

likelihood value. According to the Jeffreys’ scale (see Sec. 5.2), these models are decisively

ruled out when compared to the two alternative hypotheses. As expected the the binned

Pζ(k) performs worst, due to its significantly larger number of parameters.

We also fit the same injection using a lognormal template for ΩGW (which corresponds

to the true injection) and a binned ΩGW reconstruction with SGWBinner. As illustrated

in Fig. 25, both models reconstruct the signal very well, closely matching the injection.

Furthermore, they yield very similar best-fit likelihood values with a preference for the

lognormal template (matching the injected signal) due to its smaller number of parameters.

The main takeaway from Case 1 is that if a similar signal was detected, we could

conclude with very high statistical significance that the signal does not have a scalar-

induced origin.

We now discuss Case 2. In this case, all the models considered successfully capture

the injected signal, which consistently falls within the reconstructed contours. Unlike the

previous case, the Bayes factors are closer together, while still being orders of magnitude

apart (we would like to stress that the differences quoted in Tab. 1 are log(Z)/104). Even

here, the worst performing models are the free reconstructions – whether in ΩGW or Pζ(k)
– as they introduce a large number of parameters despite achieving a good fit. However,

their flexibility and agnostic nature make them useful in real data analysis, as they do not

require specifying a particular template. Once the main features of the signal are identified,

Tab. 1 demonstrates the power of specifying the model.
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This injection is detected so well that even using a template for ΩGW developed in [67,

Eq. (2.10)] to accurately parameterize a SGWB induced by scalar perturbations, the model

is decisively ruled out when compared to the true lognormal-in-Pζ(k) injection. This out-
come arises both because the template in [67] is described by seven free parameters com-

pared to three for the lognormal Pζ(k), and because the fit of the latter is slightly better.

Despite the former template accurately approximating the signal, it remains a phenomeno-

logical model rather than the true description. It is also interesting to stress that, in case

2, the template-based SIGWAY method performs better than the template-based SGWBinner

in reconstructing ΩGW, as can be seen in the right column of Fig. 25. This improvement

arises because the assumption of SIGWs enforces a more restricting shape for ΩGW, char-

acterized by a smaller number of parameters. In contrast, the SGWBinner imposes weaker

restrictions in the reconstruction. On the other hand, when comparing the agnostic ap-

proaches, we see that the former gives slightly better ΩGW reconstructions around the peak

of the signal, with an oscillatory behavior of the residuals due to the finite resolution of

the binned approach (40 bins). This result stresses the importance of adopting optimal

modeling of the eventual cosmological scenario when reconstructing the signal (see also

App. D).

All in all, the results of this section, although based on two illustrative examples,

demonstrate that LISA has the potential to confirm the scalar-induced nature of the SGWB

with high statistical significance. These results confirm that the true models (lognormal

ΩGW(f) and lognormal Pζ(k)) achieve the best Bayes factors when appropriately matched.

Alternative and binned models consistently show inferior fits, highlighting the distinctive-

ness of the injected signals.

However, is important to stress, that not all SGWB that may appear in LISA lead

to such a clear difference between signals that can or cannot be generated by SIGW. The

characteristic double-peak structure that we observe with the injected PLN
ζ signal is only

measurable by LISA if (a) the peak in Pζ is sufficiently narrow and (b) both peaks in ΩGW

happen to fall within the sensitivity of LISA. On the other hand, there are many potential

shapes for Pζ where these conditions are not met. In these cases the SIGW signal can

easily mimic one expected from other cosmological sources, potentially making it much

harder to rule out models. We will leave a more detailed discussion of this for future work.

8 Conclusions

In this work, we investigated the potential of the LISA detector for reconstructing the

SGWB sourced by second-order scalar perturbations. Three approaches were explored: A

binned spectrum reconstruction, template-based methods, and a direct modeling approach

rooted in first-principles scenarios (taken to be the single-field USR inflationary model for

presentation purposes).

Our results demonstrate that the direct modeling approach yields the tightest con-

straints on the primordial curvature power spectrum Pζ , particularly capturing both the

IR and UV tails of the signal with better precision than alternative methods, due to the

stronger prior information inevitably included in the fit. This highlights the power of incor-
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porating ab initio physics into signal reconstruction pipelines to leverage the constraining

power of LISA observations at their best.

The binned spectrum reconstruction approach is complementary and proved effective

in providing model-independent upper bounds on Pζ when the cosmological contribution

to the SGWB is below the sensitivity. Capturing the overall shape of the SIGW spectrum

with this approach proved to be difficult, due to a combination of missing SNR towards the

edges of the LISA window and strong degeneracies between the bins when choosing a large

number of them. Despite these shortcomings, it is possible – if a cosmological contribution

to the SGWB is detected – to tell apart signals that can be SIGW from those that cannot,

by Bayesian model selection.

In comparison, the template-based methods provided a more consistent reconstruction

across frequencies, though they inherently rely on prior assumptions about the shape of

the spectrum. The complementary strengths of these approaches suggest that an optimal

reconstruction strategy would involve their combined use, with model-dependent templates

guiding reconstructions and binned methods offering flexibility in capturing unanticipated

spectral features or in setting bounds that are agnostic on the spectral shape.

We also examined the impact of going beyond the simplest vanilla cosmological sce-

narios on the SIGW reconstruction investigating the sensitivity of SIGW signals to early-

universe physics. In particular, we included in our analysis the study of the effect of the

transition from early matter-dominated to radiation-dominated eras, as well as the role

of non-Gaussianity in the SIGW spectrum. Future research will include the study of the

effect of a time-dependent equation-of-state parameter on the SIGW spectrum, as would

be generated in the case of a smooth crossover [398, 399], such as in the QCD phase

transition. Overall our analysis demonstrated how SIGW searches in LISA will provide

constraints that vastly outperform those deduced from the effective number of relativistic

species ∆Neff and PBH overproduction bounds. In this regard, SIGW searches will also be

an invaluable tool for probing the asteroid mass window of PBH dark matter.

Looking forward, several key avenues remain open for future work. On the phenomeno-

logical side, it remains an open question how well LISA will be able to constrain primordial

non-Gaussianity or non-standard thermal histories while allowing for a fully non-parametric

curvature power spectrum. In this work we have only quoted template-based constraints

on these effects, e.g. in Figures 21 and 23, which do not consider possible degeneracies with

the shape of the spectrum.

Concerning the binned approach to reconstructing Pζ , a more mature method that

incorporates assumptions about the smoothness of the spectrum of scalar perturbations

and addresses the computational difficulties with the binning will be needed in the future.

It is likely that – even allowing for non-Gaussianities and non-standard thermal histories

– some shapes of the SGWB cannot be scalar-induced and can be confirmed as signatures

of directly sourced tensor perturbations, even without identifying a specific early-universe

source.

On the theory side, future work should consider expanding the scope of single-field

scenarios by exploring more general actions in the Jordan frame, incorporating non-minimal

coupling and non-canonical kinetic terms (e.g. Eq. 2.1 of [83]). Also, going beyond single-
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field USR models, first-principle multi-field inflationary scenarios merit investigation, as

discussed in Sec. 2.2. In some cases, multi-field models can effectively be reduced to

single field descriptions, making some of the techniques developed here already applicable,

and enabling simpler parameter space scans as done in [406, 407]. A reverse engineering

approach could be particularly valuable, where inflationary dynamics are modeled based on

a minimal set of parameters, and the corresponding inflationary potential is reconstructed

within single- or multi-field frameworks, as demonstrated in Refs. [268, 408]. Expanding

the framework for computing the non-Gaussian signatures predicted in most SIGW models

beyond the lognormal template in Sec. 4.5 could serve as a diagnostic tool for breaking

degeneracies in cases where the SGWB spectrum alone is insufficient. Also, implementing

the binned approach in scenarios with NGs could also allow us to reduce the computational

costs of these analyses. While in this work we only considered the monopole signal, as

non-Gaussianities may impact the large scale SIGW anisotropies, it would be interesting

to include information from higher order in the multiple expansion of power in the sky

[316, 409–411]. Finally, integrating these advanced modeling and reconstruction techniques

into the global fit pipeline of LISA, as well as incorporating measurements from other

experiments, will be essential for unlocking the mission’s full potential in probing the early

universe’s cosmological landscape.
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A SIGWAY code: technicalities

In this appendix, we describe some technical aspects of the SIGWAY code developed for the

analysis performed in this work.

A.1 Perturbations in USR scenarios: code structure

Given a potential V (ϕ) inducing a USR phase, the curvature power spectrum is computed

in three steps that are described below. Pζ(k) is then interpolated and ΩGWh
2 is computed

as described in A.2.

Using the notation described in Sec. 3.3, the inputs in the code are:

• the inflaton potential V (ϕ);

• the number of e-folds from when CMB modes exit the Hubble horizon to the end of

inflation NCMB→end.

• The initial conditions ϕ0 and π0 = ϕ′0.

The code then automatically defines the dimensionless variables in Eq. (3.19). For definite-

ness, in this paper, we have fixed NCMB→end = 58. Fixing the number of e-folds from the

CMB scale to the end of inflation effectively allows us to set the correspondence between

N and wavenumbers k. Fixing NCMB also implicitly fixes the thermal history of reheating

and subsequent phases. We do not model these eras for simplicity, but they would be fixed

in a complete USR+reheating model. Also, we checked that the initial SR attractor would

quickly pull the field space trajectory to the background evolution, and thus one could also

assume negligible initial velocity for simplicity.

The computation then proceeds as follows:

1. Solve for the the background evolution using Eqs. (3.21). We evolve the dynamics

until the first SR condition is violated (ϵH = 1), collecting x(N), y(N) and h(N). We

denote the number of e-folds at the end of inflation Nend.

2. Compute the relation between the wave number k and the number of e-folds N at

Hubble crossing using

k = kCMB
h(N)

hCMB
exp(N −NCMB), (A.1)

where kCMB = 0.05/Mpc, NCMB = Nend −NCMB→end and hCMB = h(NCMB). With

this, we can compute Pζ(k) in the SR approximation according to Eq. (3.25).

3. We are only interested in computing the spectrum of curvature perturbations beyond

the SR approximation for modes of relevance for LISA. Once we have computed k(N),

a set of modes covering the LISA frequency band ∼ (10−5− 10−1)Hz is selected and

those modes are evolved according to Eq. (3.31) from Nin to Nout, where Nin and

Nout can be set by the user. We found Nin = N − 3 and Nout = N + 7, where N is

the horizon crossing time of the mode, to be long enough for the modes to freeze out
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as there is no super horizon evolution in these models once USR has ended. Notice

that the USR can only last about O(3) e-folds without making perturbations grow

beyond the validity of perturbation theory. Additionally, for simple shapes of the

potential, we find that evolving ∼ 100 modes in k and interpolating between them

yields sufficient precision.

4. Lastly, Pζ(k) is computed without resorting to the SR approximation using Eq. (3.32).

This quantity is then passed to the algorithm computing ΩGWh
2 which can then be

passed to the LISA likelihood.

Fig. 26 shows the evolution of a number of modes in Pζ as a function of N across the USR

phase. As this algorithm is called many times when sampling the LISA likelihood, we are

using the package diffrax [412] to solve the inflationary perturbation equation of motion.

−35 −30 −25 −20 −15
N −Nend

10−11

10−8

10−5

10−2

P ζ

10−5

10−3

10−1

101

k
[s
−

1
]

Figure 26. Power spectrum as a function of N for different modes k indicated by the color

palette, close to the onset of the USR phase N −Nend ≃ −28. This plot shows the evolution and

freezing out of modes for different values of k for the potential from Eq. (2.4). The evolution of

each mode is traced for around ∆N ≃ 10 e-folds from within the Hubble sphere to sufficiently after

Hubble crossing and freezing. The time of Hubble crossing is marked with gray dots.

A.2 Computation of SIGWs from the spectrum of curvature perturbations

For a given shape of Pζ(k), computing ΩGWh
2 is relatively straightforward by evaluating

the double integral in Eq. (4.20). The main concern here is making this computation as

fast as possible, as this dominates the time it takes for each likelihood evaluation. To take

full advantage of vectorization, we compute s, t, k on a grid, where s is linearly spaced, and

t, k are logarithmically spaced. The integration in t is convergent for any realistic shape

of Pζ as both the value of I2(k, s, t) tends towards 0 for large t and there needs to be

some cutoff controlling the amplitude of Pζ at large momenta not to violate BBN bounds.

If Pζ(k) features a scale after which it drops rapidly, it can be advantageous to define a

custom t(k) and compute the grid as s, t(k), k.
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After evaluating the integrand in Eq. (4.20) on the grid, the integral is computed with

Simpson-integration. Depending on the shape of Pζ , we found a number of points in the

grid around Ns ∼ 10− 100, Nt ∼ 300− 1000 and Nk ∼ 100 would give sufficient precision.

To take full advantage of threading, we use JAX and just-in-time compilation [375] for

computing the integrand and performing the integration itself. Altogether, this results in

a significant speedup over other publicly available codes (e.g. [413]). We record wall-clock

times of ∼ 10−2 s for calculating 100 values of ΩGW for Pζ containing only JAX-native

functions. In the case discussed in Sec. 6.2.2 this time rises to about 1 s. Crucially, this

speedup allows us to sample the posterior distribution efficiently and obtain good MCMC

convergence with a laptop on timescales of O(hours).

A.3 Computation of SIGWs using binned coefficients

In the case where we bin Pζ(p) in momentum space, ΩGW(k) can be computed in a straight-

forward manner through Eq. (4.27). The most computationally expensive part of this is

the computation of the coefficients Ω
(i,j)
GW(k). Luckily we can precompute these coefficients

on a grid and save them as a Nk × Np × Np tensor Kk
ij ≡ Ω

(i,j)
GW(k). At runtime, we then

compute a Np×Np tensor of B = A⊗A, with which we can conveniently re-write Eq. (4.27)

as

Ωk
GW = Ωk

ijB
ij , (A.2)

where we used Einstein sum convention. The reason for doing this arguably very simple

conversion is that the matrix equation is fully vectorizable with JAX.

Using this trick we are able to compute ΩGW from Pζ in ≲ 10−3 s for Nk = Np = 50,

thus making inference possible despite a large number of parameters to sample.

A.4 Computation of SIGWs including primordial NGs

In this appendix, we provide additional technical details regarding the MCMC analyses

that resulted in Figures 24 and 23, as well as the parameter scan leading to Fig. 22. As

reported in Sec. 4.5, the trispectrum arising from the local expansion Eq. (4.37) leads to

additional contributions to the SIGW spectrum. In particular, from the connected part,

one obtains the following two terms

ΩGW(k, η)|t =
1

12π

(
k

aH

)2(3

5
fNL

)2 ∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

×
∫ 2π

0
dφ12 cos 2φ12

u1v1
(u2v2)2

1

w3
a,12

J̃(u1, v1, x)J̃(u2, v2, x)

× Pζg(v2k)Pζg(u2k)Pζg(wa,12k) ,

(A.3)

and
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ΩGW(k, η)|u =
1

12π

(
k

aH

)2(3

5
fNL

)2 ∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

×
∫ 2π

0
dφ12 cos 2φ12

u1u2
(v1v2)2

1

w3
b,12

J̃(u1, v1, x)J̃(u2, v2, x)

× Pζg(v1k)Pζg(v2k)Pζg(wb,12k) ,

(A.4)

were the integration variables ti and si are defined as in Eq. (4.19). To keep the equation

concise, some terms have been left expressed as functions of ui and vi, but they have to

be intended as depending on the integration variables ti and si. Moreover, we introduced

J̃(ui, vi, x) = v2i k
2 sin2 θI(ui, vi, x), with I(u, v, x) the integration kernel defined in the main

text and wa,12 and wb,12, defined as

wa,12 =[v21 + v22 − 2v1v2(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ12)]
1/2 , (A.5)

and
wb,12 =

[
1 + v21 + v22 + 2v1v2(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ12)

− 2v1 cos θ1 − 2v2 cos θ2
]1/2

.
(A.6)

The sine and cosine functions are related to the integration variables by

cos θi =
1− si(1 + ti)

ti − si + 1
, sin2 θi =

(1− s2i )ti(2 + ti)

(ti − si + 1)2
. (A.7)

As shown in Eqs. (A.3) and (A.4), the evaluation of the NG corrections requires a 5

dimensional integration for each of the frequencies at which the final GW spectrum is

evaluated. However, fNL and As are multiplicative parameters and the effect of k∗ just

results in a shift of the spectrum along the k-axis. Hence, once the spectrum is evaluated

for a fixed width ∆, it can be used for different values of the parameters reported above,

without requiring further evaluation. When ∆ is varied, instead, a new evaluation of the

spectrum is required each time. Hence, just a single evaluation of the spectrum would

require relatively little time, but the evaluation of the whole spectrum for each point of

the MCMC would notably slow down the run, making it difficult to get the final posterior

in a reasonable time, also considering the presence of other parameters in the MCMC

evaluation.

For this reason, to speed up the evaluation we proceed as follows: we numerically

pre-compute a grid of NG contributions to the GW spectra as a function of frequency

for different widths, in order to explore the range log10∆ ∈ [−1, 1]. This grid is then

used to obtain the NG corrections to the spectrum corresponding to any value of ∆ in

the range considered, by interpolating them from the pre-computed ones. In detail, to get

the spectrum corresponding to those values of ∆̄ not present in the grid, we first search

for ∆max and ∆min, respectively immediately above and below ∆̄. Then we compute the

interpolated spectrum by Taylor expanding around these values, obtaining

ΩGW(∆̄) = ΩGW(∆max)wmin +ΩGW(∆min)(1− wmin) , (A.8)
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with

wmin =
(∆̄−∆min)

(∆max −∆min)
. (A.9)

For the evaluation of the scans that require a Fisher forecast and hence the derivatives

with respect to the parameters, we proceed in a similar way. We pre-compute a grid of

derivatives20 in the range log10∆ ∈ [−1, 1] and then we interpolate as explained above.

A.5 Inference

Once ΩGW has been computed by the SIGWAY, the resulting spectrum is interpolated in log-

space and passed to the SGWBinner which computes the posterior distribution according to

Eq. (5.21). Cobaya [374, 414] is used as an inference-framework. We use different samplers

for Monte Carlo sampling depending on the dimensionality, requirements, and structure of

the posterior surface:

• The inferences in Figs. 3, 4, 8, 9, 11, 12, and 21 have been run using the nested

sampler nessai [415–417].

• Figs. 5, 6, 19, 23, and 24 have been obtained using Cobaya’s CosmoMC [418, 419]

MCMC, where we started the chains at the injected values and injected FIM estimates

of the covariance matrix to speed up convergence.

• The evidences in Sec. 7 have been computed with the nested sampler PolyChord [403,

404]

• The inference for Figs. 14 and 15 was performed using the active learning algorithm

GPry [420, 421] due to the prohibitively slow speed of computing Pζ stemming from

the Bessel functions in its equation.

All corner plots have been created with GetDist [422]. In the corner plots, we omitted

showing the marginalised constraints on Anoise and Pnoise, as in all cases they were well

constrained and showed weak degeneracies with the signal parameters. To give an idea of

how tightly these parameters tend to be constrained, Fig. 27 shows a corner plot including

the constraints on Anoise and Pnoise for the injected lognormal Pζ (see Eq. (3.5)).

B Challenges with binned analyses and a large number of bins

The binned approach to performing the double integration going from Pζ to ΩGW intro-

duced in Sec. 4.4 – while in principle extremely powerful at reconstructing any SIGW

spectrum without model-dependence – unfortunately suffers from some crucial shortcom-

ings as will be explained in this section.

For the sake of illustration, we will only consider the case where all modes reenter

during radiation domination (see Sec. 4.2) where the kernel is k-independent. The situation

20Note that when taking the derivative with respect to As and fNL the integrals remain unchanged, hence

we consider the same pre-computed NG contributions used in the MCMC runs. When taking the derivative

with respect to k∗ or ∆, instead, since the integrand is varied, we pre-compute a grid for each of these two

derivatives.
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Figure 27. Same as Fig. 5 but showing the marginalised contours for all sampled parameters

including the noise parameters Anoise, Pnoise. There is a relatively mild degeneracy between Anoise

and αGal but no correlations between the signal parameters As,∆, k∗ and the noise parameters.

We found similar correlations (or the lack thereof) for all other injections.

changes a bit if the kernel has a k-dependence such as is the case during an early matter

domination era (see Sec. 4.3), however, our main arguments remain unchanged.

It is clear from the structure of the integral in Eq. (4.20), that a single wavenumber k

in Pζ affects multiple frequencies in ΩGW. An easy way to understand this is to consider a

Pζ that is sufficiently close to a monochromatic source Pζ(k) = Asδ(k−k∗). In our binned

approach this translates to one single bin A∗ being non-zero. Fig. 28 shows three such

spectra with 100 bins, where each one contains a single non-zero bin A⋆ (bin nr. 85, 86, 87

in this case). It is evident from this figure that if the peak towards k∗ is not resolved, and

only the causality tail in the IR regime enters the LISA sensitivity, these spectra become

entirely degenerate. This means that there is not necessarily a unique mapping ΩGW 7→ Pζ .
In other words, the power from the bins is “leaking” into adjacent bins.

In reality, this means that, for many bins and towards low SNR, the binned recon-
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Figure 28. Three different spectra in ΩGW generated with the binned approach with 100 bins where

for each spectrum only one of the bins is non-zero. The black dashed line shows the approximate

power law integrated sensitivity of LISA assuming a 4-year mission. It is clear from this picture

that the three adjacent bins shown are entirely degenerate when trying to resolve them with LISA

as the peaks are well outside the sensitivity and the causality tails generated are exactly the same.
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Figure 29. Same as Fig. 3, but for an injected BPL spectrum following the benchmark USR

model and using 50 bins.

structed Pζ is highly degenerate, and valid reconstructions include “oscillations” between

the bins as lower power in one bin can be compensated by higher power in an adjacent one.

The aforementioned degeneracies are not unexpected and are really just a feature of

the physical properties of the process of scalar-induced gravitational waves. However, they
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do induce some practical complications. In an ideal template-agnostic pipeline, we would

want to perform inference on the Nbins bins in Pζ to reconstruct the signal with the highest

evidence parameterization. Due to the large (non-linear) degeneracies between the bins,

the likelihood is far from Gaussian and the FIM approximation is invalid, making MC-

sampling necessary. Sampling over this space is very computationally challenging due to

(a) the very narrow degeneracies (b) the resulting large number of posterior modes and (c)

the high dimensionality of the parameter space. In practice, this leads to overconfidence

in the reconstruction, as some posterior modes are inevitably missed or underexplored by

the MC sampler. Fig. 29 shows the binned reconstruction of the USR model injection from

Sec. 2.4 with 50 bins. The oscillation effect is clearly visible in the low SNR region, where

Pζ oscillates between high power and low power, thus overconstraining certain bins. These

degeneracies are partially broken by fewer bins, as visible in Fig. 3.

This leaves us in a dilemma: we would like to bin Pζ as finely as possible to increase

the frequency resolution of the template, but as one increases Nbins the posterior becomes

much more difficult to sample. In our tests, we found Nbins = 15 to be reliable in terms of

convergence for the BPL signal (Fig. 3) and Nbins = 40 for the injected lognormal signals

in ΩGW and Pζ (Fig. 25) that occupy less of the frequency range. However, it is clear that

this low number of bins cannot reconstruct the shape of Pζ with high fidelity.

Luckily, this problem does not appear when no signal is present, as the posterior

distribution in Ai becomes a simple upper bound, an unimodal structure that is easy to

map by a nested sampler, even in high dimensions. We can therefore conclude that the

upper bounds obtained by this method are reliable even with many bins.

Future work on this approach could include studying improved bases for the recon-

structed bins (a basis of Gaussians or other wide kernels in Pζ may be less multi-modal),

or improving sampling by manually adding jump proposals to the degenerate modes of the

posterior in a given basis (e.g. as is done for LISA black hole binary sampling in BBHx [56]).

C Testing the resolvability of Non-Gaussian corrections: Additional plots

Fig. 30 shows a corner plot that was obtained by injecting a purely Gaussian SIGW signal

with a lognormal shape in Pζ (see Eq. (3.5)) that is equivalent to the cases discussed in

Figs. 23 and 24 with fNL = τNL = 0. The remaining injected parameters are the same as

in Section 6.5: log10As = −2, log10∆ = −0.75, log10(k∗/s−1) = −2.3. By comparing these

results to the one obtained for fNL = 1 shown in Fig. 23 and fNL = 10 shown in Fig. 24,

we see that the NG contribution neither significantly improves, nor worsens the constraints

on the signal and foreground parameters.

D Testing the scalar-induced hypothesis: Additional plots

Figure 31 provides further insight into the quality of reconstruction when comparing the

SGWBinner and the SIGWAY methods. The noise is accurately reconstructed in all cases,

with only a slight underestimation in case 1 (left panel) using the SIGWAY template recon-
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Figure 30. Same as Fig. 5 for the same injected parameters as in Sec. 6.5.

struction. In contrast, the extragalactic background is reconstructed less accurately with

the SGWBinner compared to the other methods.

A particularly notable observation is that in case 1 (left column), the SIGWAY tem-

plate method significantly underestimates both the extragalactic and galactic foregrounds.

This underestimation can be attributed to the model compensating for excess power in the

causality tail by reducing the power allocated to the foregrounds, due to the limited flexibil-

ity in the shape of ΩGW provided by the template. Interestingly, in case 2 (right column),

the SIGWAY method – using the template or not – performs better than the SGWBinner in

reconstructing the foregrounds. This improvement arises because the assumption of SIGWs

enforces a specific shape for ΩGW, which cannot be easily mimicked by the foregrounds.

In contrast, the SGWBinner does not impose such restrictions during reconstruction. This

result stresses the importance of adopting optimal modeling of the eventual cosmological

signal even when reconstructing the astrophysical properties of the foreground sources.
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